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ABSTRACT 

A formal theory of new class of many-valued logics, called EQ-logics, has 

been recently introduced by M. Dyba and V. Novak. They are based on a 

special algebra of truth values called EQ-algebra introduced by V. Novak and 

open the door to an alternative development of mathematical fuzzy logics by 

starting with equivalence instead of implication. This direction can be 

considered as a generalization of the equational classical logics due to Gries 

and Schneider and it is justified by the idea presented by G.W.Leibniz that “a 

fully satisfactory logical calculus must be an equational one”. Moreover, the 

formal proofs can be more effectively formed in an equational style; that is 

substitution of equals for equals, this makes it easier to discover proofs than it 

is when using the Hilbert style of deduction, rendering proofs more natural 

and more calculational. 

This work continues the research in EQ-logics and their algebraic semantics 

that can be taken as special kind of fuzzy logics where completeness with 

respect to chains is the constitutive feature of all fuzzy logics. In particular, 

we introduce and study a class of separated (not necessarily good) lattice EQ-

algebras that may be represented as subalgebras of products of linearly ordered 

ones. Such algebras are called representable. Namely, we enrich separated 

lattice EQ-algebras with a unary operation (the so called Baaz delta), fulfilling 

some additional assumptions. The resulting algebras are called ℓEQΔ
s -

algebras. One of the main results of this thesis is to characterize the class of 

representable ℓEQΔ
s -algebras. We also provide a number of useful results, 

leading to this characterization. This also allows us to develop a more general 

fuzzy EQ-logic in which the basic connective is fuzzy equality and the 

implication is derived from the latter. Precisely, we formulate the 

corresponding ℓEQ𝚫
s -logic which is rich enough to enjoy the completeness 
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property and its set of truth values is formed by ℓEQΔ
s -algebras in which the 

fuzzy equality is one of the basic operations. The implication operation (as 

well as the corresponding connective) is derived. We in detail introduce syntax 

and semantics of the ℓEQ𝚫
s -logic and prove various theorems characterizing 

its properties including completeness. Formal proofs in this thesis proceed 

mostly in an equational style. 
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Introduction 

Mathematical logic has been for many years developed on the basis of 

implication as the main connective. In the recent past, new direction of the 

development has been initiated which is called equational logic  [14, 29]. This 

logic is based on equality as the main connective. This direction is justified by 

the idea presented by G.W.Leibniz [2] that a fully satisfactory logical calculus 

must be an equational one. It is also argued by its proponents see [14] that 

equational logic is the pedagogically proper setting to do proofs because its 

main tool, substitution of equals for equals, makes it easier to discover proofs 

(than it is when using the Hilbert style of deduction), rendering proofs more 

natural and more calculational. 

It brought an idea to develop also (fuzzy) many-valued logics on the basis of 

fuzzy equality (equivalence) as the principal connective. Accordingly, a 

formal theory of new different many-valued logics, called EQ-logics, has been 

recently introduced by M. Dyba and V. Novák [6]. They are based on a special 

algebra of truth values called EQ-algebra introduced by V. Novak in [22] ( 

also [7, 8, 23]). Unlike the residuated lattices, the basic operation in it is a 

fuzzy equality while implication is derived from it. Its axioms reflect basic 

properties which fuzzy equality should have to fit the supporting structure, 

namely the ordered set. Its original motivation comes from the study of higher-

order fuzzy logic [20] that was obtained as a generalization of simple type 

theory in the style of L. Henkin who developed in [16] a very elegant theory 

[1] in which the basic connective is equality. 

As we believe that completeness w.r.t. chains is the constitutive feature of all 

fuzzy logics (see papers [3, 4] where reasons for this belief are presented), EQ-

logics satisfying chain completeness are called here fuzzy EQ-logics. 
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Analysis of necessary properties of the fuzzy equality revealed that we cannot 

consider the fuzzy equality in full generality without means enabling us to deal 

with the classical (crisp) equality. This is possible using the Delta-connective. 

Thus, unlike the residuated fuzzy logics [10, 17] where the Δ-connective is 

interesting but dispensable option, the role of it in fuzzy equality-based logics 

is much deeper [5, 6]. We conclude that the general fuzzy equivalence is not 

sufficient and a crisp equivalence is necessary for well-behaving logic. On the 

other hand, the current investigation of fuzzy EQ-logics [5, 6] shows that 

goodness, is sufficient for the resulting logic has many reasonable properties 

including completeness and Delta-deduction theorem. The goodness axiom 

means that each element 𝑥 is equal to 𝟏 in the degree 𝑥. It implies that the 

algebra is separated (i.e., two elements equal in the degree 𝟏 must be identical) 

but not vice-versa. Therefore, Separateness turned out to be indispensable for 

any kind of fuzzy equality based logic. 

In this work, we continue developing the formal theory of fuzzy EQ-logics 

and their algebraic semantics. Namely, we focus more closely on the important 

role played by expanding the EQ-logics by the Delta-connective in our further 

development of both separated EQ-algebras and the corresponding EQ-logics. 

The long term goal of the research is to develop more general fuzzy EQ-logics 

whose semantics based on separated (need not to be good) EQ-algebras. 

One of the important algebraic consequences of goodness axiom is 

axiomatizing the class of representable good EQ-algebras (expanded by Delta-

connective) [7, 8]. This is mainly based on the fact that good EQ-algebras give 

raise to BCK-algebras [11, 25]. Further, development of this direction could 

also deal with the more challenging problem of characterizing separated (not 

necessarily good) representable EQ-algebras. This also allows us to develop a 
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more general fuzzy EQ-logics whose semantics based on separated (need not 

to be good) EQ-algebras. 

The thesis is made up of six chapters organized as follow: 

In chapter 2: A summary of syntax and semantics of propositional logic are 

introduced. Moreover, all basic definitions and notions of formula, logical 

axioms, inference rules and formal proof are presented. While we also present 

short notes on soundness, and completeness of propositional logic [29]. 

In chapter 3: This chapter is divided into two parts; the first part is customized 

mainly for recalling the definitions of residuated lattices and BL algebra. The 

concept of EQ-algebras are introduced, the basic definitions, important 

essential properties, special kinds of EQ-algebras, and some examples of EQ-

algebras [8, 23] are provided. Moreover, we display prelinear EQ-algebras, 

and also, we introduce the prefilters and filters of EQ-algebras [7]. Finally, we 

present characterizing both of the representable class of good EQ-algebras, 

good EQ-algebras with a unary operation "Δ", and its prelinear version [5, 7, 

8]. The second part is dedicated for introducing an overview for the basic EQ-

logic and show its fundamental properties whose good EQ-algebras as the 

algebraic structure of its truth values. Also, the completeness theorem of the 

basic EQ-logic is introduced [6]. As well as the prelinear EQΔ-logic and its 

completeness theorem are showed [5]. To this point, we discuss the previous 

studies that were introduced in the last years. 

In chapter 4: We introduce and discuss a special type of EQ-algebras 

called  ℓEQΔ
𝑠 -algebras. As well as, introducing and studying in-depth the filters 

and the congruences of ℓEQΔ
𝑠 -algebras. Moreover, characterizing the 

representable class of ℓEQΔ
𝑠 -algebras will be introduced. 
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In chapter 5: We present the ℓEQ𝚫
𝑠 -logic and prove its main properties 

including the completeness theorem and the deduction theorem. It should be 

given emphasis to that formal proofs in this thesis proceed mostly in the 

equational style.  

In chapter 6: The future work and conclusions obtained from the thesis are 

given. 
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Equational Propositional Logic 

Mathematical logic, or as we will simply say, "logic", represents the most 

general means of mathematical reasoning used by mathematicians and 

computers. Its core consists of the study of the form, meaning, use, and 

limitations of logical deductions, the so-called proofs. 

Classical logic is usually presented as implication is the basic connective but 

there exists also approach based on equivalence as basic connective instead of 

implication which, however, gains gradually still more and more interest, too 

(see, e.g. [29]). There are at least two main reasons for that. First, equality 

(equivalence) seems to be more essential connective than implication. This 

direction is justified by the idea presented by G.W.Leibniz (cf. [2]) that a fully 

satisfactory logical calculus must be an equational one. Moreover, the formal 

proofs can be more effectively formed in an equational style. The second 

reason is also argued by its proponents (see, for example, [14]) that equational 

logic is the pedagogically proper setting to do proofs because its main tool, 

substitution of equals for equals, makes it easier to discover proofs (than it is 

when using the Hilbert style of deduction), rendering proofs more natural and 

more calculational. Both approaches are equivalent. 

More precisely, in this chapter we introduce an overview of the simplest part 

of mathematical logic, the equational propositional logic, or simply equational 

logic (also namely, Boolean logic, propositional calculus, sentential logic, and 

sentential calculus). You will get acquainted with the notions of formula, 

logical axioms, inference rules, and formal proof, while we also present some 

backgrounds in syntax and semantics of equational logic. We will show that 

equational logic of [29] is sound (with respect to the conventional model of 

evaluation of Boolean expressions) and complete. Proofs have been presented 
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in either the Hilbert style or the equational style. We explain both styles and 

argue that the equational style is superior. The equational style makes it 

possible to develop and present calculations in a rigorous manner, without 

complexity and detail overwhelming (in contrast to other proof style) (for the 

details see [14, 15] and also [30]). 

2.1 Syntax of Equational Logic 

Equational Logic is a formal language, which has a set of symbols (alphabet), 

a set of formation rules (syntax) that tells us whether a formula in propositional 

logic is well-formed formula (grammatically correct), and a semantics that 

assigns formulas a truth value (meaning). It is a natural language, like English. 

This formal language has been constructed to formulate, for example, the 

axioms, theorems, and proofs. In that context, the connectives played an 

important role. Therefore we include the following symbols in the 

propositional logic languages: "¬" (for “negation”), " ∧ " (for “conjunction”), 

" ∨ " (for “disjunction”), " → " (for “implication”), and " ≡ " (as a symbol for 

“equivalence”), and Boolean constants, namely ⊤ and ⊥. 

Definition 2.1. ([29]) (Alphabet of Equational Logic language) 

The language of equational logic consists of propositional variables p, q,…, 

binary connectives ¬, ∧, ∨, →, ≡, and Boolean constants, namely ⊤ and ⊥. 

ℛ shall stand for the language of equational logic. 

Definition 2.2. ([29]) (Equational Logic Formulas) 

All Boolean variables are atomic formulae, and so are the symbols ⊤ and ⊥. If 

𝑃 and 𝑄 are formulae, then so are the following ¬𝑃, 𝑃 ∧ 𝑄, 𝑃 ∨ 𝑄, 𝑃 → 𝑄, and 

𝑃 ≡ 𝑄. 
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Let us we denote by ℱℛ the set of all formulas for the given language ℛ, and 

by Γ the special axioms (sometimes also non-logical axioms), that is any 

subset  Γ ⊆ ℱℛ. 

2.2 Semantics of Equational Logic 

The semantics of Boolean formulae is defined through a process that allows 

us to assign a logical meaning to formulas, and this under certain conditions. 

Definition 2.3. ([29]) (Truth Evaluation) 

A truth evaluation 𝑒 is a function 𝑒 ∶  ℱℛ → 𝑆, 𝑆 = {T, F} is defined as 

follows: if  𝑝 ∈ ℱℛ is a propositional variable, then  𝑒(𝑝) ∈  𝑆, while 𝑒(⊤) =

T and 𝑒(⊥) = F. Furthermore 

𝑒(¬𝑃) = ¬𝑒(𝑃) 

𝑒(𝑃 ⊙ 𝑄) = 𝑒(𝑃) ⊙ 𝑒(𝑄), where  ⊙ ∈ {∧ , ∨ , → , ≡ }. 

Table 2-1 Truth Table 

𝒑 𝒒 ¬𝒑 𝒑 ∧ 𝒒 𝒑 ∨ 𝒒 𝒑 → 𝒒 (𝒑 ≡ 𝒒) 

T T F T T T T 

T F F F T F F 

F T T F T T F 

F F T F F T T 

Definition 2.4. ([29]) (Truth Tables) 

A truth-table is a table for visually displaying the distribution of truth and 

falsity through a composite formula given the basic inputs from the atomic 

formulae. There are five functions or operations (Boolean functions), that take 

values from the set {F, T} as inputs and produce values in the same set as 

outputs, and Table 2-1 describes their behavior, which known as a truth table. 
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Definition 2.5. ([29]) (Tautology) 

A formula 𝑃 ∈ ℱℛ is a tautology if 𝑒(𝑃) = T for each truth evaluation 𝑒 ∶

 ℱℛ → 𝑆. We use ⊨taut 𝑃 as the notation to indicate that 𝑃 is a tautology. 

Example 2.1. ([29]) (Some tautologies) 

⊤ and 𝑞 → 𝑞 are tautologies. The latter follows from 𝑒(𝑞 → 𝑞) = 𝑒(𝑞) → 𝑒(𝑞) 

and Table 2-2. 

Table 2-2: Truth table of (𝑞 → 𝑞) 

𝒒 𝒒 (𝒒 → 𝒒) 

T T T 

F F T 

 

2.3 Proofs and Theorems 

Equational logic is developed to write down theorems. It is a tool through 

which we formulate and establish mathematical truth. This truth is captured 

absolutely (tautologies) or relatively to certain hypotheses (tautological 

implications). Thus, our main task when we use Boolean logic, is to discover 

and verify tautologies, and more generally, to discover and verify tautological 

implications. The process of certifying tautologies and tautological 

implications is syntactic instead of semantic (truth table driven) and is called 

theorem proving. 

First off, axioms are usually statements that are taken to be true. There are two 

types of axioms: The logical axioms are certain well-chosen absolute truths; 

therefore, they are tautologies. The other type is called special axioms, also 

named non-logical axioms or assumptions or hypotheses. 
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2.3.1 Logical Axioms 

Logical axioms codify the most basic properties of the connectives, and 

describe its behavior. The following list presents the logical axioms for 

propositional logic (see [29]). 

Definition 2.6. (Logical Axioms) 

In what follows, 𝑃, 𝑄, 𝑅 denote arbitrary formulae: 

(1) Associativity of ≡                 ((𝑃 ≡ 𝑄) ≡ 𝑅) ≡ (𝑃 ≡ (𝑄 ≡ 𝑅)) 

(2) Symmetry of ≡                                            (𝑃 ≡ 𝑄) ≡ (𝑄 ≡ 𝑃) 

(3) ⊤ vs. ⊥                                                                        ⊤ ≡ ⊥ ≡ ⊥ 

(4) Introduction of ¬                                                  ¬ 𝑃 ≡  𝑃 ≡ ⊥ 

(5) Associativity of  ∨                           (𝑃 ∨ 𝑄) ∨ 𝑅 ≡ (𝑃 ∨ (𝑄 ∨ 𝑅) 

(6) Symmetry of  ∨                                                     𝑃 ∨ 𝑄 ≡ 𝑄 ∨ 𝑃 

(7) Idempotency of  ∨                                                        𝑃 ∨ 𝑃 ≡ 𝑃 

(8) Distributivity of  ∨ Over ≡          𝑃 ∨ (𝑄 ≡ 𝑅) ≡ 𝑃 ∨ 𝑄 ≡ 𝑃 ∨ 𝑅 

(9) Excluded Middle                                                             𝑃 ∨  ¬ 𝑃 

(10) Golden Rule                                           𝑃 ∧ 𝑄 ≡ 𝑃 ≡ 𝑄 ≡ 𝑃 ∨ 𝑄 

(11) Implication                                                   𝑃 → 𝑄 ≡ 𝑃 ∨ 𝑄 ≡ 𝑄 

2.3.2 Inference Rules 

Inference rule is a logical construct which takes premises, analyzes their 

syntax and returns a conclusion (deriving new formulas from old ones). 

The following two are our Inference Rules of Boolean logic, given with the 

help of the syntactic variables 𝑃, 𝑄, 𝐶 and 𝐩1: 

The Leibniz rule (Leib) 

                                                           
 

1 The symbol p is a metavariable for any propositional variable 𝑝, 𝑞, …. 
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𝑃 ≡ 𝑄

𝐶[𝐩 ≔ 𝑃]  ≡  𝐶[𝐩 ≔ 𝑄]
 

The Equanimity rule (EA) 

𝑃,   𝑃 ≡  𝑄

𝑄
 

An instance of an inference rule is obtained by replacing all the letters 𝑃, 𝑄, 𝐶 

by specific formulae and  𝐩 by a specific variable. 

We call the "numerator" the premises (we also say hypotheses or assumptions) 

and the "denominator" the conclusion of the rule. 

The Leibniz rule (Leib) allows us to "substitute equals for equals" in an 

expression without changing the value of that expression. It therefore gives a 

method for demonstrating the equality of two expressions. In this method, the 

format we use to show an application of Leibniz is 

      𝐶[𝐩 ≔ 𝑃] 

             ≡ 〈𝑃 ≡ 𝑄〉 

                 𝐶[𝐩 ≔ 𝑄] 

The first and third lines are the equal expressions of the conclusion in the 

Leibniz rule; the annotation on the middle line is the premise  "𝑃 ≡ 𝑄". 

Once we have written "𝑃 ≡ 𝑄", we can choose any formula 𝐶 whatsoever and 

any variable 𝐩 and construct the output, first effecting two substitutions and 

then connecting the results with the connective " ≡ " in the indicated order. 

Note that the Leibniz rule is not functional: Infinitely many different outputs 

are possible for a given input "𝑃 ≡ 𝑄". 
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Definition 2.7. ([29]) (Proofs) 

A proof is any finite (ordered) sequence of formulae (theorems), where each 

formula is a premise or logical axiom or a derived formula from earlier 

sentences in the proof by one of the rules of inference. 

The last formula is the theorem (also called goal) that we want to prove. 

2.3.3 Equational versus Hilbert-style proofs 

A Hilbert-style proof consists of a sequence of formulae written vertically on 

the page, numbering every row for referring to previous formulae, and 

provided by annotations to explain what we are doing at every step and why. 

Each formula is hypnosis or an axiom or the conclusion of an inference rule 

whose premises appear previously (axioms, or proved theorems). Such 

formula is called a theorem. 

As an example, we give a simple annotated Hilbert proof from [29]: 

Example 2.1. ([29]) (the other equanimity) 

𝑄, 𝑃 ≡ 𝑄 ⊢ 𝑃. 

Proof. ([29]) 

(1) 𝑄                                   (hypothesis) 

(2) 𝑃 ≡ 𝑄                           (hypothesis) 

(3) 𝑃 ≡ 𝑄 ≡ 𝑄 ≡ 𝑃           (Symmetry of ≡) 

(4) 𝑄 ≡ 𝑃                           ((2) + (3) + (EA)) 

(5) 𝑃                                   ((1) + (4) + (EA)) 

Example 2.2. ([29]) (Transitivity of  " ≡ ") 

𝑃 ≡ 𝑄, 𝑄 ≡ 𝑅 ⊢ 𝑃 ≡ 𝑅. 
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Proof. ([29]) 

(1) 𝑃 ≡ 𝑄                            (hypothesis) 

(2) 𝑄 ≡ 𝑅                            (hypothesis) 

(3) (𝑃 ≡ 𝑄) ≡ (𝑃 ≡ 𝑅)      ((2) + Leib; 𝐶 − part is "𝑃 ≡ 𝐩", 𝐩 is 𝐟𝐫𝐞𝐬𝐡2) 

(4) 𝑃 ≡ 𝑅                             ((1) + (3) + (EA)) 

On the other hand, the equational style proof consists of a sequence of 

formulas of the form 𝑃1 ≡ 𝑃2, 𝑃2 ≡ 𝑃3, … , 𝑃𝑛−1 ≡ 𝑃𝑛. Each of the 

formulas 𝑃𝑖−1 ≡ 𝑃𝑖 must be either an assumption, or a logical axiom, or 

derived earlier, or derived using the Leibniz inference rule. It consisting of a 

series of applications of the Leibniz rule is linked implicitly by the transitivity. 

Each step of the proof is provided by an informative annotation to explain how 

we arrived at the formula 𝑃𝑖−1 ≡ 𝑃𝑖. The following is the equational style 

proof layout: 

                 𝑃1 

                 ⇔ 〈Annotation〉 

                 𝑃2 

                  ⋮                                      (Equational Style Proof Layout) 

                 𝑃𝑛−1 

                 ⇔ 〈Annotation〉 

                 𝑃𝑛 

Since the symbol " ≡ " is associative, it is not conjunctional; that is "𝑃 ≡ 𝑄 ≡

𝑅" does not mean "𝑃 ≡ 𝑄" and "𝑄 ≡ 𝑅"; therefore, the symbol " ⇔ " is our 

conjunctional " ≡ " and will appear only in equational proofs and only on their 

                                                           
 

2 “Fresh” means that 𝐩 does not occur in any of 𝑃, 𝑄, 𝑅. 
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leftmost column at that. Thus  "𝑃 ⇔ 𝑄 ⇔ 𝑅" means only "𝑃 ≡ 𝑄" and "𝑄 ≡

𝑅". It is meant that  𝑃1 ≡ 𝑃2 and 𝑃2 ≡ 𝑃3 and  𝑃3 ≡ 𝑃4, etc. 

When using Leibniz we must be also very clear as to what the "C-part" is and 

state any special requirements that we may have put on 𝐩, e.g., "freshness". 

For Leibniz, the suggested style of annotation is 

Leib + {
Axiom

Hypothesis
Theorem

} ; "𝐶 − part" … 

We now present the equational style proof for Example 2.1. 

      𝑃 

                 ⇔ 〈hypothesis (𝑃 ≡ 𝑄)〉 

                 𝑄 

Example 2.3. ([29])  ⊢ 𝑃 ≡ 𝑃. 

Proof. 

      𝑃 ∨ 𝑃 ≡ 𝑃 

                 ⇔ 〈(Leib) + Axiom: 𝑃 ∨ 𝑃 ≡ 𝑃; "C − part": 𝐩 ≡ 𝑃〉 

                 𝑃 ≡ 𝑃 

Example 2.4. ([29])  ⊢ 𝑃 ∨ ⊤. 

Proof. ([29]) 

      𝑃 ∨ ⊤ 

                 ⇔ 〈(Leib) + Axiom: ⊤ ≡⊥≡⊥; "C − part": 𝑃 ∨ 𝐩〉 

                 𝑃 ∨ (⊥≡⊥) 

                 ⇔ 〈Axiom (𝑃 ∨ (𝑄 ≡ 𝑅) ≡ 𝑃 ∨ 𝑄 ≡ 𝑃 ∨ 𝑅)〉 

                 𝑃 ∨⊥≡ 𝑃 ∨⊥ 
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Remark 2.1. 

(1) The first formula of equational style proof is equivalent to the last one. 

Thus, the equational proof need not be built up to the final formula as in the 

case of Hilbert-style proof; whenever convenient, it can start with it and end 

up with some known formula as in Example 2.4. Moreover, each step is an 

application of Leibniz and we need not to mention none of the inference rules 

explicitly in an equational proof, this reduces the amount of writing when 

presenting the proof and the amount of reading in understanding it. 

Consequently, the proofs are more concise and thus, easy to read and 

remember (for more details see [29] or [14]). 

(2) In the equational style proof, the aim of each step is to replace the 

expression using Leibniz (substitution of equals by equals). The shape of the 

expression and the already existing theorems give guidance to construct the 

proofs easily and then to remember it. Furthermore, making it possible to teach 

its development. 

Many theorems, which describe the main properties of the propositional logic, 

have proofs were introduced in [29]. 

2.4 Soundness and completeness of propositional logic 

Syntax and semantics are two parts of propositional logic. Soundness and 

completeness theorems for propositional logic show the interplay between 

these two components. The first states that our logic is truthful, or sound. That 

is, whenever Γ ⊢ 𝑃, then also Γ ⊨taut 𝑃  (i.e. each provable formula is a 

Boolean tautology). The second states that the chosen axioms (and inference 

rules) are "just the right ones" to ensure that syntactic proofs are able to 

generate all tautologies. That is, whenever Γ ⊨taut 𝑃, then also Γ ⊢ 𝑃 (i.e. 

each true formula is provable). 
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2.4.1 Soundness 

Propositional logic is sound with respect the standard interpretation. To see 

this, first, prove that if premises of each inference rule are valid then so is its 

conclusion. Second, check that each axiom is valid, and this is justified by 

truth tables. 

Lemma 2.1. ([29]) 

The two inference rules preserve truth. That is,  

𝑃, 𝑃 ≡ 𝑄 ⊨𝑡𝑎𝑢𝑡 𝑄 

, and 

 𝑃 ≡ 𝑄 ⊨taut 𝑅[𝐩 ≔ 𝑃]  ≡  𝑅[𝐩 ≔ 𝑄] 

Theorem 2.1. ([29]) (Soundness of Propositional Calculus) 

Γ ⊢ 𝑃 implies that Γ ⊨taut 𝑃. 

2.4.2 Completeness 

It is shown that propositional logic is complete in [29]. Completeness means 

that every semantically valid formula can be proved syntactically. There are 

two methods of proofs. The first one is straightforward. It shows how one can 

use the hypothesis that a formula  𝑃 is a tautology in order to construct its 

formal proof. The second proof shows how one can deduce that a formula  𝑃 

is not a tautology from the fact that it doesn’t have a proof. It is hence called 

a contrapositive construction method. The term contrapositive refers to an 

implication. The contrapositive of the formal implication "𝑃 → 𝑄" is  "¬𝑄 →

¬𝑃", therefore proving " ⊢ 𝑃 → 𝑄" is as good as proving  ⊢ ¬𝑄 → ¬𝑃 by 

Equanimity. The last methodology is used in [29] to prove the completeness 

of propositional logic. 
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The proof idea of completeness of propositional Logic in [29] is based on a 

few constructions along with a few claims and their proofs as follows: 

First of all, assume the hypothesis side, Γ ⊬ 𝑃. Then construct a set of 

formulae, Λ which is as large as possible with the properties that it includes  Γ, 

but also Λ ⊬ 𝑃. Λ is so big a set of assumptions that anything you can prove 

from them, with any proof, can also be proved by a proof of length one. 

We also, define a state 𝜈 by setting, for each variable  𝐩, 𝑣(𝐩)  =  T iff  𝐩 ∈ Λ; 

which represents our Main Claim: 

For all formulae 𝑃, 𝑣(𝑃) = T iff  𝑃 ∈ Λ (equivalently,𝑣(𝑃) = F iff 𝑃 ∉ Λ) 

Then, our goal is to prove this claim. The proof is by induction on the 

complexity of  𝑃. 

After that, we can easily conclude the proof as follows: by the Main Claim, 

every formula  𝑃 in Λ and hence every formula 𝑃 in Γ since Γ ⊆ Λ satisfies 

𝑣(𝑃) = T. On the other hand, as Λ ⊬ 𝑃 it must be 𝑃 ∉ Λ; thus, again via the 

Main Claim, 𝑣(𝑃) = F. Therefore  Γ ⊭ 𝑃. This completes the proof. 

Theorem 2.2. ([29]) (Completeness of Propositional Calculus) 

Γ ⊨taut 𝑃 implies that Γ ⊢ 𝑃. 

Theorem 2.3. ([29]) (Deduction Theorem) 

For each theory  𝑇, formula 𝑃 and arbitrary formula 𝑄 it holds that: 

𝑇 ∪ {𝑃}├ 𝑄 iff  𝑇 ⊢ 𝑃 ⇒ 𝑄.  
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EQ-Logics: Fuzzy Logics Based on Fuzzy Equality 

When tracing back the development of logic we can distinguish two basic 

directions: (a) implication is the basic connective and modus ponens is the 

fundamental inference rule and (b) logical equivalence (taken as an equality 

between truth values) is the basic connective and the basic inference rules are 

equanimity and Leibniz ones. Direction (a) is popular than (b) for many years; 

but the latter, however, gains gradually still more and more interest, too (cf., 

e.g. [14, 29]). There are at least two main reasons for that. First, equality 

(equivalence) seems to be more essential connective than implication. This 

direction is justified by the idea presented by G.W.Leibniz (cf. [2]) that a fully 

satisfactory logical calculus must be an equational one. Moreover, the formal 

proofs can be more effectively formed in an equational style. The second 

reason is also argued by its proponents (see, for example, [14]) that equational 

logic is the pedagogically proper setting to do proofs because its main tool, 

substitution of equals for equals, makes it easier to discover proofs (than it is 

when using the Hilbert style of deduction), rendering proofs more natural and 

more calculational. 

 

 

 

 

 

The restriction of classical logic is that every proposition either completely 

true or completely false (no middle). However, there are also propositions with 

variable answers. The following example shows how a classical argument fails 

Figure 3-1 Boolean logic versus Many-valued logic 
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to work when one passes from classical logic to Multi-valued logic: The 

sentence "The patient is young" is true to some degree. The lower the age of 

the patient (measured e.g. in years), the more the sentence is true. Figure 3.1 

shows that the truth of a many-valued proposition is a matter of degree. 

Classical logic is just a special case of many-valued logic and of course fuzzy 

logic, so the "fuzziness" can be restricted. In other words, when many-valued 

logic is restricted to the values zero and one (true, and false), it becomes 

classical logic. So, if we restrict each connective in many-valued logic to zero 

and one, it becomes classical connective. 

As in the classical logic, there are two basic directions in many-valued logics. 

First, logics based on implication while (fuzzy) equality is derived from it. 

EQ-logics whose EQ-algebras as the algebraic semantics is an example of this 

direction. The second direction is based on (fuzzy) equality instead of 

implication, for example the basic logic (BL) which has semantical domain of 

the residuated lattice (see [17]). These directions generalizes the 

corresponding directions in classical logic. Unlike classical logic, which can 

be equivalently developed starting either by implication or by equivalence 

(cf.[29]), many-valued logics, however, the situation is different; implication 

based and equality based approaches are no more equivalent; i.e. the fuzzy 

EQ-logic is not equivalent with the residuated fuzzy logics. 

In this chapter, we present a specific developed formal logic in which the fuzzy 

equality is basic connective and the implication is derived from it. Moreover, 

the fusion connective (strong conjunction) is non-commutative. This logic is 

called EQ-logic and can be considered as special type of fuzzy logic (cf. [6]) 

and a generalization of the equational classical logics due to Gries and 

Schneider [14].  First, we introduce of the concept of EQ-algebra and its main 

properties as well as the corresponding propositional EQ-logics and show its 
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main properties including the completeness property. Furthermore, we show 

the important effect of adding Δ-connective to EQ-logic language and how it 

is necessary to develop its first-order version (cf. [5]). Finally, we present the 

concept and properties of prelinear EQ𝚫-Logic. 

3.1 EQ-Algebras: The Algebraic Semantics of EQ-Logics 

Each many-valued logic is uniquely defined by the algebraic properties of its 

truth values structure. It is generally for many years accepted that this 

algebraic structure must be a residuated lattice in fuzzy logic, possibly 

fulfilling some extra properties (the definition and several useful properties of 

residuated lattices can be found in [12]). Unlike the stated direction in 

algebraic semantics where multiplication and residuation are the basic 

operations, and the most important connectives are strong conjunction and 

implication in the corresponding fuzzy logics, there is a new direction in the 

development of logic justified by G.W. Leibniz’s idea (cf. [2]). Hence, as an 

alternative to residuated lattices, a special algebra called EQ-algebra has been 

presented by Novák [22] and elaborated in [23]. The original motive was to 

present a special algebra of truth values for fuzzy type theory (FTT) (see [21]) 

that generalizes the classical type theory (cf. [1]) where the basic connective 

is equality instead of implication. Analogously, the main connective in FTT 

should be fuzzy equality " ∼ ". Another motive for EQ-algebras arises from 

the equational style of proof in logic. 

From the point of view of logic, the basic difference between residuated 

lattices and EQ-algebras lies in how the implication operation is obtained. 

Where in residuated lattices, it is obtained from a (strong) conjunction, in EQ-

algebras, it is derived from fuzzy equality. As well as, EQ-algebras behave 

differently than residuated lattices, as is shown (see [8]) by the fact that 𝑝 →

𝑞 = 𝟏 doesn’t imply that 𝑝 ≤ 𝑞. Therefore, the two kinds of algebras differ in 
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multiple basic points, although their many similar or matching properties. 

Indeed, EQ-algebras generalize residuated lattices since they relax the tie 

between multiplication and residuation, the so-called adjointness property (i.e. 

between conjunction and implication in logic); the implication is defined from 

the fuzzy equality " ∼ " by the formula 𝑝 → 𝑞 = (𝑝 ∧ 𝑞) ∼ 𝑝. Since this 

equation holds also for the biresiduum, every residuated lattice can be 

considered as an EQ-algebra but not vice versa, see Example 3.2. 

3.1.1 Residuated lattices 

Definition 3.1. ([23]) 

An algebra ℒ = (𝐿, ∧, ∨, ⊗, ⇒, 𝟎, 𝟏) of type (2, 2, 2, 2, 0, 0) is called a 

commutative, integral, bounded residuated lattice if the following conditions 

are satisfied: 

(L1) (𝐿, ∧, ∨, 𝟎, 𝟏) is a lattice with the bottom and top elements 𝟎 and 𝟏, 

respectively (with respect to the lattice ordering " ≤ "), 

(L2) (𝐿, ⊗, 𝟏) is a commutative monoid with the unit element 𝟏, 

(L3) ⊗ and ⇒ form an adjoint pair, i.e. for all 𝑝, 𝑞, 𝑟 ∈ 𝐿 it holds that 

                                        𝑝 ⊗ 𝑞 ≤ 𝑟  iff  𝑝 ≤ 𝑞 ⇒ 𝑟     (Adjointness property) 

The binary operation " ∧ " is called meet, " ∨ " is called join, " ⊗ " is called 

multiplication, and " ⇒ " is called residuation. 

There are many properties of residuated lattices, see [12, 24]. In the following 

definition, we shall introduce an algebra called BL-algebra (a residuated 

lattice, fulfilling some additional properties) which is the algebraic semantics 

of the basic many-valued logic, BL; that is considered, actually an example of 

fuzzy logic based on the implication as a basic connective instead equivalence 

(for, more details see, [17]). 
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Definition 3.2. ([23]) 

A residuated lattice ℒ = (𝐿, ∧, ∨, ⊗, ⇒, 𝟎, 𝟏) is a BL-algebra iff the 

following two identities hold for all 𝑝, 𝑞 ∈ 𝐿: 

(a) Prelinearity: (𝑝 ⇒ 𝑞) ∨ (𝑞 ⇒ 𝑝) = 𝟏; 

(b) Divisibility: 𝑝 ⊗ (𝑝 ⇒ 𝑞) = 𝑝 ∧ 𝑞. 

MTL-algebras are residuated lattices fulfilling the prelinearity condition. They 

are the algebraic semantics of the Monoidal t-norm based logic (or shortly, 

MTL) (for, more details see, [10]). 

3.1.2 EQ-algebras 

I. Definition and Fundamental Properties of EQ-algebras 

Definition 3.3. ([8]) 

An algebra ℰ = (𝐸, ∧, ⊗, ∼, 𝟏) of type (2, 2, 2,0) is called an EQ-algebra 

where for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐸: 

(E1) (𝐸, ∧, 𝟏) is a ∧-semilattice with top element 1. We set 𝑝 ≤ 𝑞 iff 𝑝 ∧ 𝑞 =

𝑝; 

(E2) (𝐸, ⊗, 𝟏) is a monoid and ⊗ is isotone in both arguments w.r.t. 𝑝 ≤ 𝑞, 

(E3) 𝑝 ~ 𝑝 = 𝟏;                                                                             (reflexivity) 

(E4) ((𝑝 ∧ 𝑞) ∼ 𝑟) ⊗ (𝑠 ∼ 𝑝) ≤ 𝑟 ∼ (𝑠 ∧ 𝑞);                              (substitution)   

(E5) (𝑝 ∼ 𝑞) ⊗ (𝑟 ∼ 𝑠) ≤ (𝑝 ~ 𝑟) ∼ (𝑞 ∼ 𝑠);                                    (congruence)  

(E6) (𝑝 ∧ 𝑞 ∧ 𝑟) ∼ 𝑝 ≤ (𝑝 ∧ 𝑞) ∼ 𝑝;                                             (monotonicity) 

(E7) 𝑝 ⊗ 𝑞 ≤ 𝑝 ∼ 𝑞. 

The binary operation " ∧ " is called meet (infimum), " ⊗ " is called 

multiplication, and  "~"  is a fuzzy equality. 
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The substitution axiom (E4) is motivated by the substitution principle 

formulated already by G.W. Leibniz: “if 𝑃 equals 𝑄 then 𝑃 can be replaced by 

𝑄 wherever 𝑃 occurs”. The congruence axiom naturally generalizes the 

following property of the classical equality: if 𝑝 = 𝑞 and 𝑟 = 𝑠, then the truth 

of 𝑝 = 𝑟 is the same as the truth of 𝑞 = 𝑠. 

Remark 3.1. ([8]) 

The definition of EQ-algebras in [[23], Definition 1] includes extra axiom, 

namely, 

 (𝑝 ∧ 𝑞) ∼ 𝑝 ≤ (𝑝 ∧ 𝑞 ∧ 𝑟 ) ∼ (𝑝 ∧ 𝑟) (3.1) 

It has been shown in [8] that we do not need this axiom because it is derived 

from the other axioms. Moreover, Definition 3.3 differs from the original 

definition of EQ-algebras ([23], Definition 1) in that the multiplication "⨂" 

need not be commutative. Also, that the commutativity axiom of 

multiplications is superfluously restrictive, i.e. a weaker requirement put on 

non-commutative multiplications is sufficient to guarantee all expected 

general properties of fuzzy equalities and EQ-algebras. 

Clearly, " ≤ " is the classical partial order. We set, for 𝑝, 𝑞 ∈ 𝐸: 

 𝑝 → 𝑞 = (𝑝 ∧ 𝑞) ∼ 𝑝 (3.2) 

 𝑝 = 𝑝 ∼ 𝟏 (3.3) 

If ℰ also contains a bottom element 0, then we define the unary operation ¬ 

on 𝐸 by  

 ¬𝑝 = 𝑝 ∼ 𝟎         𝑝 ∈ 𝐸 (3.4) 

The derived operation (3.2) is called implication. Hence, we may rewrite (E6) 

and (3.1) as 
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 𝑝 → (𝑞 ∧ 𝑟) ≤ 𝑝 → 𝑞 (3.5) 

 𝑝 → 𝑞 ≤ (𝑝 ∧ 𝑟) → 𝑞 (3.6) 

We will introduce the essential properties of EQ-algebras presented in ([8, 19, 

23]). 

Lemma 3.1. ([8, 19, 23]) 

Let ℰ be an EQ-algebra. For all 𝑝, 𝑞, 𝑟 ∈ 𝐸, it holds that: 

(a)  𝑝 ∼ 𝑞 = 𝑞 ∼ 𝑝;                                                                           (symmetry) 

(b) (𝑝 ∼ 𝑞) ⊗ (𝑞 ∼ 𝑟) ≤ (𝑝 ∼ 𝑟);                                                  (transitivity) 

(c) (𝑝 ∼ 𝑠) ⊗ ((𝑝 ∧ 𝑞) ∼ 𝑟) ≤ (𝑠 ∧ 𝑞) ∼ 𝑟; 

(d) (𝑝 ∧ 𝑞) ∼ 𝑝 ≤ (𝑝 ∧ 𝑞 ∧ 𝑟) ∼ (𝑝 ∧ 𝑟); 

(e) Let 𝑝 ≤ 𝑞, then 

𝑝 → 𝑞 = 𝟏, 𝑝 ∼ 𝑞 = 𝑞 → 𝑝, 𝑟 → 𝑝 ≤ 𝑟 → 𝑞 and 𝑞 → 𝑟 ≤ 𝑝 → 𝑟; 

(f) (𝑝 → 𝑞) ⊗ (𝑞 → 𝑟) ≤ (𝑝 → 𝑟);                      (transitivity of implication) 

(g)  𝑝 ⨂ 𝑞 ≤ 𝑝 ∧ 𝑞 ≤ 𝑝, 𝑞  and  𝑞 ⨂ 𝑝 ≤ 𝑝 ∧ 𝑞 ≤ 𝑝, 𝑞; 

(h)  (𝑝 ∼ 𝑞) ≤ 𝑝 → 𝑞  and  𝑝 → 𝑝 = 𝟏;                                      ( → is reflexive) 

(i)  𝑝 = 𝑞  implies 𝑝 ∼ 𝑞 = 𝟏; 

(j)  𝑞 ≤ 𝑞̃ ≤ 𝑝 → 𝑞; 

(k)  𝑝
0

↔ 𝑞 ≤ (𝑝 ∼ 𝑞) ≤ 𝑝 ↔ 𝑞; If ℰ is linearly ordered, then ≤ can be 

replaced by an equality; 

(l)  𝑝 → 𝑠 ≤ (𝑟 → 𝑝) → (𝑟 → 𝑠); 

(m)  𝑝 → 𝑠 ≤ (𝑠 → 𝑟) → (𝑝 → 𝑟); 

(n)  𝑝 → 𝑞 = 𝑝 → (𝑝 ∧ 𝑞); 

(o)  𝑝 → (𝑞 → 𝑟) ≤ 𝑞 → (𝑝 → 𝑟̃); 

(p)  𝑝 → (𝑞 → 𝑟) ≤ (𝑝 ⊗ 𝑞) → 𝑟̃4. 
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From here on, we shall often freely use the transitivity and symmetry of  "~" 

without special reference to the above lemma. 

     Let us put 

 𝑝 ↔ 𝑞 = (𝑝 → 𝑞) ∧ (𝑞 → 𝑝). (3.7) 

 
𝑝

0
↔ 𝑞 = (𝑝 → 𝑞) ⊗ (𝑞 → 𝑝) 

(3.8) 

   

Theorem 3.1. ([8]) 

The class of EQ-algebras is a variety. 

Definition 3.4. ([23]) 

Let ℰ be an EQ-algebra. We say that it is: 

 Separated  if for all  𝑝, 𝑞 ∈ 𝐸, 

 𝑝 ∼ 𝑞 = 𝟏  implies  𝑝 = 𝑞 (3.9) 

   

 Spanned   if it contains a bottom element 0 and 

 𝟎̃ = 𝟎 ∼ 𝟏 = 𝟎 (3.10) 

   

 Good  if for all  𝑝 ∈ 𝐸, 

 𝑝 = 𝑝 (3.11) 

   

 Residuated if for all  𝑝, 𝑞, 𝑟 ∈ 𝐸, 

 (𝑝 ⊗ 𝑞) ∧ 𝑟 = (𝑝 ⊗ 𝑞)  iff  𝑝 ∧ ((𝑞 ∧ 𝑟) ∼ 𝑞) = 𝑝 (3.12) 

   

 Lattice-ordered EQ-algebra if the underlying ∧-semilattice is a lattice, 

 Lattice EQ-algebra (ℓEQ-algebra) if it is lattice-ordered in which the 

following substitution axiom holds for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐸: 

 ((𝑝 ∨ 𝑞) ∼ 𝑟) ⊗ (𝑠 ∼ 𝑝) ≤ 𝑟 ∼ (𝑠 ∨ 𝑞) (3.13) 
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 prelinear if for all  𝑝, 𝑞 ∈ 𝐸, 1 is the unique upper bound in 𝐸 of the set 

{(𝑝 → 𝑞), (𝑞 → 𝑝)}. 

Remark 3.2. ([23]) 

(i) Every good EQ-algebra is obviously spanned but not vice versa. 

(ii)  Clearly, (3.12) can be written in a classical way such as 

𝑝 ⊗ 𝑞 ≤ 𝑟  iff  𝑝 ≤ 𝑞 → 𝑟. 

(iii) An EQ-algebra can be lattice-ordered but not necessarily an ℓEQ-algebra. 

(iv) The prelinearity does not require the existence of a join operator in  𝐸. 

However, in the following, we will illustrate that every prelinear and good 

EQ-algebra is a lattice-ordered one where the join operation is definable 

in terms of the meet " ∧ " and the implication " → " operations. 

 

II. Examples of EQ-algebras 

In this section, we introduce a few interesting examples of EQ-algebras. 

Example 3.1. ([23]) 

Let ℒ = (𝐿, ∧, ∨, ⊗, →, 𝟎, 𝟏) be a residuated lattice. 

(a) The algebra  ℒ′ = (𝐿, ∧, ⊗, ↔, 𝟏) is a separated EQ-algebra. If  ℒ is 

linearly ordered (then ↔ = 
0

↔ according to Lemma 3.1(k)), then also ℒ′′ =

(𝐿, ∧, ⊗,
0

↔ , 𝟏) is a separated EQ-algebra. 

(b) Let ⊙ ≤ ⊗ be an isotone monoidal operation on 𝐿. Then also ℒ′ = (𝐿, ∧,

⊙, ↔, 𝟏) is a separated EQ-algebra. 
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Example 3.2. ([7]) 

Example of a finite non-trivial good EQ-algebra is the following: its 

(semi)lattice structure is in Figure 3.2. Fuzzy equality and multiplication are 

defined as in Table 3.1 and Table 3.2 respectively. 
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𝑟 𝑠 𝑢 𝑡 𝟏 𝑟 𝑟 𝑟 𝑟 

𝑠 𝑟 𝑟 𝑟 𝑟 𝟏 𝑢 𝑡 𝑠 

𝑡 𝑝 𝑝 𝑟 𝑟 𝑢 𝟏 𝑠 𝑡 

𝑢 𝑞 𝑐 𝑞 𝑟 𝑡 𝑠 𝟏 𝑢 

𝟏 𝟎 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝟏 

⨂ 𝟎 𝑝 𝑞 𝑟 𝑠 𝑡 𝑢 𝟏 

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 

𝑝 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑝 

𝑞 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑞 

𝑟 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑝 𝑟 

𝑠 𝟎 𝟎 𝟎 𝟎 𝑠 𝑠 𝑠 𝑠 

𝑡 𝟎 𝟎 𝟎 𝟎 𝑠 𝑒 𝑠 𝑡 

𝑢 𝟎 𝟎 𝟎 𝟎 𝑠 𝑑 𝑠 𝑢 

𝟏 𝟎 𝑝 𝑞 𝑟 𝑠 𝑒 𝑢 𝟏 

𝑞 

𝑞

𝑝 

𝑝 𝟎 

𝟎

𝑠 

𝑠

𝑟 

𝑟

𝑡 

𝑡

𝑢 

𝑢

1 

Figure 3-2 Eight elements good EQ-algebra 

Table 3-2 Multiplication of 

Example 3.2 

Table 3-1 Fuzzy equality of 

Example 3.2 
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Since 𝑟 ⊗ 𝑓 = 𝑝 but  𝑓 ⊗ 𝑟 = 𝟎, the multiplication is not commutative. 

Moreover, this algebra is non-residuated since, e.g., 𝟎 = 𝑝 ⊗ 𝑢 ≤ 𝑞; but 𝑝 ≰

𝑢 → 𝑞 = 𝑞. 

III. Properties of special EQ-algebras 

Proposition 3.1. ([8]) 

The following statements are equivalent: 

(a) An EQ-algebra ℰ is separated. 

(b) 𝑝 ≤ 𝑞  iff  𝑝 → 𝑞 = 𝟏 for all  𝑝, 𝑞 ∈ 𝐸. 

Remark 3.3. ([8]) 

According to the last proposition the implication operation " → " in a separated 

EQ-algebra precisely reflects the ordering " ≤ ". 

Proposition 3.2. ([8]) 

Let ℰ be a lattice-ordered EQ-algebra, then the following hold  ∀ 𝑝, 𝑞, 𝑟 ∈ 𝐸: 

(a) ℰ is ℓEQ-algebra if and only if the following inequality holds, 

 𝑝 ∼ 𝑞 ≤ (𝑝 ∨ 𝑟) ∼ (𝑞 ∨ 𝑟) (3.14) 

   

(b) 𝑝 ∧ 𝑞 → 𝑟 = (𝑝 → 𝑟) ∨ (𝑞 → 𝑟). 

Proposition 3.3. ([8, 23]) 

Let ℰ be an ℓEQ-algebra, then the following hold for all  𝑝, 𝑞, 𝑟 ∈ 𝐸: 

(a) 𝑝 → 𝑞 = (𝑝 ∨ 𝑞) ∼ 𝑞 = (𝑝 ∨ 𝑞) → 𝑞; 

(b) (𝑝 → 𝑟) ⊗ (𝑞 → 𝑟) ≤ (𝑝 ∨ 𝑞) → 𝑟. 
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Lemma 3.2. ([7]) 

Let ℰ be a prelinear and separated EQ-algebra. Then for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐸, it 

holds that: 

(a) 𝑝 ↔ 𝑞 = 𝑝 ∼ 𝑞; 

(b) 𝑝 → (𝑞 ∧ 𝑟) = (𝑝 → 𝑞) ∧ (𝑝 → 𝑟). 

Lemma 3.3. ([7]) 

Let ℰ be a prelinear and separated ℓEQ-algebra; then the following hold for 

all  𝑝, 𝑞, 𝑟 ∈ 𝐸: 

(a)  ℰ is distributive; i.e., 

𝑝 ∧ (𝑞 ∨ 𝑟) = (𝑝 ∧ 𝑞) ∨ (𝑝 ∧ 𝑟) 

(b)  (𝑝 ∨ 𝑞) → 𝑟 = (𝑝 → 𝑟) ∧ (𝑞 → 𝑟). 

Note that the dual of the identity in Lemma 3.3(a)  (i.e., 𝑝 ∨ (𝑞 ∧ 𝑟) =

(𝑝 ∨ 𝑞) ∧ (𝑝 ∨ 𝑟) holds and the two identities are equivalent to each other (see 

[28]). 

Proposition 3.4. ([8]) The following statements are equivalent: 

(a) An EQ-algebra E is good. 

(b) 𝟏 → 𝑞 = 𝑞  for all 𝑞 ∈ 𝐸. 

Lemma 3.4. ([8, 23]) 

Let ℰ be a good EQ-algebra. For all  𝑝, 𝑞, 𝑟 ∈ 𝐸, it holds that 

(a)  𝑝 ≤ (𝑝 ∼ 𝑞) ∼ 𝑞; 

(b)  ℰ is separated and axiom (E7) is provable from the other EQ-axioms; 

(c)  𝑝 ≤ (𝑝 → 𝑞) → 𝑞; 

(d)  𝑝 ⊗ (𝑝 ∼ 𝑞) ≤ 𝑝 ∧ 𝑞  and  (𝑝 ~ 𝑞) ⊗ 𝑝 ≤ 𝑝 ∧ 𝑞; 
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(e)  𝑝 ⊗ (𝑝 → 𝑞) ≤ 𝑝 ∧ 𝑞  and  (𝑝 → 𝑞) ⊗ 𝑝 ≤ 𝑝 ∧ 𝑞; 

(f)  𝑝 ≤ 𝑞 → 𝑟  implies  𝑝 ⊗ 𝑞 ≤ 𝑟  and  𝑞 ⊗ 𝑝 ≤ 𝑟. 

The following theorem presented in [8] and which shows that  {→, 𝟏}-reducts3 

of good EQ-algebras are BCK-algebras (for the definitions and fundamental 

properties of BCK-algebras, (see [13, 18, 26, 27]). Thus, each good EQ-

algebra can be regarded as a BCK-meet-semilattice with the additional 

operations "⨂" and " ∼ ". 

Theorem 3.2. ([8]) 

The {∧, →, 𝟏}-reducts of good EQ-algebras are BCK-meet-semilattices, 

where " → " is defined by (3.2). 

Consequently, the proof of the following lemma follows from the theory of 

BCK-algebras well-known results. 

Lemma 3.5. ([8, 23]) 

Let ℰ be a good EQ-algebra. For all  𝑝, 𝑞, 𝑟 ∈ 𝐸, it holds that 

(a)  𝑝 ≤ 𝑞 → 𝑟  iff  𝑞 ≤ 𝑝 → 𝑟; 

(b)  𝑝 → (𝑞 → 𝑟) = 𝑞 → (𝑝 → 𝑟);                         (Exchange principle (EP)) 

(c)  𝑝 → (𝑞 → 𝑟) ≤ (𝑝 ⊗ 𝑞) → 𝑟  and  𝑝 → (𝑞 → 𝑟) ≤ (𝑞 ⊗ 𝑝) → 𝑟; 

(d)  For all indexed families {𝑝𝑖} in 𝐸, provided that {𝑝𝑖} has supremum in 𝐸, 

we have 

⋁𝑖𝑝𝑖 → 𝑟 = ⋀𝑖(𝑝𝑖 → 𝑟). 

 

                                                           
 

3 Given an algebra (𝐺, 𝐻) where 𝐻 is the set of operations on 𝐺, and 𝐻′ ⊆ 𝐻: Then the 

algebra (𝐺, 𝐻′) is called the 𝐻′-reduct of (𝐺, 𝐻). 
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Theorem 3.3. ([7]) 

Let ℰ be a prelinear and good EQ-algebra ℰ = (𝐸, ∧, ⊗, ~, 𝟏), then ℰ is a 

prelinear and good ℓEQ-algebra, where the join operation is given by 

 𝑝 ∨ 𝑞 = ((𝑝 → 𝑞) → 𝑞) ∧ ((𝑞 → 𝑝) → 𝑝)     𝑝, 𝑞 ∈ 𝐸 (3.15) 

Remark 3.4. 

As a result of Theorem 3.3, all good ℓEQ-algebras properties are also prelinear 

and good EQ-algebras properties (for the properties of good ℓEQ-algebras, see 

[9, 23]). 

Proposition 3.5. ([7]) 

The following holds in prelinear and good EQ-algebra ℰ for all 𝑝, 𝑞 ∈ 𝐸: 

(a) 𝑝 ∨ 𝑞 = 𝟏 iff  𝑝 → 𝑞 = 𝑞 and 𝑞 → 𝑝 = 𝑝; 

(b) 𝑝
0

↔ 𝑞 = 𝑝 ∼ 𝑞 iff  𝑝 ∨ 𝑞 = 𝟏  implies  𝑝 ⊗ 𝑞 = 𝑝 ∧ 𝑞. 

Remark 3.5. 

In general, in a prelinear and good (commutative) EQ-algebra 

𝑝
0

↔ 𝑞 ≠ 𝑝 ∼ 𝑞 (see Example 3.3). But, this identity always holds for all 

linearly ordered EQ-algebras. This shows that prelinearity alone does not 

characterize the representable class of all good (commutative) EQ-algebras. 

Example 3.3. ([7]) 

Let 𝐸 be the bounded lattice {𝟎, 𝑝, 𝑞, 𝑟, 𝟏} with the partial order " ≤ " defined 

by:𝟎 ≤ 𝑝 ≤ 𝑞 ≤ 𝟏 and  𝟎 ≤ 𝑝 ≤ 𝑟 ≤ 𝟏, whereas 𝑞 and 𝑟 are non-comparable 

as shown in Figure 3-3. 
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The following fuzzy equality and multiplication define a prelinear and good 

EQ-algebra in which the identity 𝑝
0

↔ 𝑞 = 𝑝 ∼ 𝑞 does not hold for all  𝑝, 𝑞 ∈

𝐸, since, e.g. 𝑝 = 𝑞 ∼ 𝑟 ≠ (𝑞 → 𝑟) ⊗ (𝑟 → 𝑞) = 𝑟 ⊗ 𝑞 = 𝟎. 

 

 

 

 

 

 

 

 

Lemma 3.6. ([7]) 

A good EQ-algebra ℰ is prelinear if and only if the following inequality holds 

for all 𝑝, 𝑞, 𝑟 ∈ 𝐸: 

 (𝑝 → 𝑞) → 𝑟 ≤ ((𝑞 → 𝑝) → 𝑟) → 𝑟 (3.16) 

⨂ 𝟎 𝑝 𝑞 𝑟 𝟏 

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 

𝑝 𝟎 𝟎 𝟎 𝑝 𝑝 

𝑞 𝟎 𝑝 𝑞 𝑝 𝑞 

𝑟 𝟎 𝟎 𝟎 𝑟 𝑟 

𝟏 𝟎 𝑝 𝑞 𝑟 𝟏 

~ 𝟎 𝑝 𝑞 𝑟 𝟏 

𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 

𝑝 𝟎 𝟏 𝑝 𝑝 𝑝 

𝑞 𝟎 𝑝 𝟏 𝑝 𝑞 

𝑟 𝟎 𝑝 𝑝 𝟏 𝑟 

𝟏 𝟎 𝑝 𝑞 𝑟 𝟏 

Table 3-3 Multiplication of 

Example 3.3 

Table 3-4 Fuzzy equality of 

Example 3.3 

𝟏 

𝑓

𝟎 

𝑓

𝑟 

𝑟

𝑞 

𝑞
𝑝 

𝑝

Figure 3-3 Bounded lattice {𝟎, 𝑝, 𝑞, 𝑟, 𝟏} 
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Inequality (3.16) has been chosen by Hájek and El-Zekey (see [7, 17]) as the 

prelinearity axiom in his axiomatization of BL-algebras and good EQ-

algebras, respectively, obviously because it is free from operations of lattice. 

Definition 3.5. ([8]) 

Let ℰ = (𝐸, ∧, ⊗, ~, 𝟏) be a separated EQ-algebra. A subset 𝐹 ⊆ 𝐸 is called 

a prefilter of  ℰ if for all 𝑝, 𝑞 ∈ 𝐸: 

(a) 𝟏 ∈ 𝐹; 

(b) If  𝑝, 𝑝 → 𝑞 ∈ 𝐹, then 𝑞 ∈ 𝐹. 

A prefilter 𝐹 is said to be filter if for all 𝑝, 𝑞, 𝑟 ∈ 𝐸: 

(c) If 𝑝 → 𝑞 ∈ 𝐹, then (𝑝 ⊗ 𝑟) → (𝑞 ⊗ 𝑟) ∈ 𝐹, (𝑟 ⊗ 𝑝) → (𝑟 ⊗ 𝑞) ∈ 𝐹. 

A prefilter 𝐹 is called proper if  𝐹 ≠ 𝐸. If  𝟎 ∈ 𝐸 then a prefilter 𝐹 ⊂ 𝐸 is 

proper iff  𝟎 ∉ 𝐹. 

A prefilter F is said to be a prime prefilter (or simply prime) if for all 𝑝, 𝑞 ∈

𝐸: 𝑝 → 𝑞 ∈ 𝐹 or 𝑞 → 𝑝 ∈ 𝐹. 

It is easy to see that the singleton {𝟏} is a filter in any separated EQ-algebra, 

and it is contained in any other filter. Note that if 𝐹 is prime and 𝐺 is a prefilter 

such that 𝐹 ⊆ 𝐺; then 𝐺 is a prime prefilter. 

Definition 3.6. ([28]) 

Let 𝑷 be an algebra of type  ℱ. Then thee relation  𝜃 is a congruence on 𝑷 if  𝜃 

is equivalence relation and satisfies the following compatibility property: 

For each 𝑛-ary operation (or function) symbol 𝑓 ∈ ℱ and elements  𝑝𝑖, 𝑞𝑖 ∈ 𝑃, 

if  𝑝𝑖𝜃𝑞𝑖 holds for  1 ≤ 𝑖 ≤ 𝑛 then 

𝑓𝑷(𝑝1, 𝑝2, … , 𝑝𝑛) 𝜃𝑓𝑷(𝑞1, 𝑞2, … , 𝑞𝑛) 
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IV. Representable good EQ-algebras 

Recall that an EQ-algebra that is a subdirect product of those with underlying 

linear order is said to be representable. We assign this section to introduce the 

characterization of the representable class of good EQ-algebras. This is mainly 

based on study in-depth the prefilters, filters and the congruences of EQ-

algebras and other useful results, leading to this characterization. 

Definition 3.7. ([28]) 

An algebra  𝑃 is a subdirect product of an indexed family {𝑃𝑖}𝑖∈𝐼 of algebras if 

(a) 𝑃 ≤ ∏ 𝑃𝑖𝑖∈𝐼  (i.e. 𝑃 is a subalgebra of  ∏ 𝑃𝑖𝑖∈𝐼 ); 

(b) 𝜋𝑗(𝑃) = 𝑃𝑗  for all 𝑗 ∈ 𝐼, where  𝜋𝑗: ∏ 𝑃𝑖𝑖∈𝐼 → 𝑃𝑗 is a natural projection 

map. 

A one-to-one homomorphism ℎ: 𝑃 → ∏ 𝑃𝑖𝑖∈𝐼  is called a subdirect embedding 

if  ℎ(𝑃) is a subdirect product of the family {𝑃𝑖}𝑖∈𝐼. 

Remark 3.6. 

We know that the underlying poset 𝐸 of an EQ-algebra ℰ need not be a join-

semilattice. So, given 𝑝, 𝑞 ∈ 𝐸, we shall write 𝑝 ∨ 𝑞 = 𝟏 to mean that the 

supremum of {𝑝, 𝑞} in 𝐸, exists and is equal to 1. 

Proposition 3.7. ([7]) 

Let ℰ be good EQ-algebra. Then the following statements are equivalent, for 

all  𝑝, 𝑞, 𝑟, 𝑠, 𝑢 ∈ 𝐸 

(a) ℰ is prelinear and satisfies the quasi-identity 

 𝑝 ∨ 𝑞 = 𝟏  implies  𝑝 ∨ (𝑠 → (𝑠 ⨂ (𝑟 → (𝑞 ⨂ 𝑟)))) = 𝟏 

 
(3.17) 

(b) ℰ  satisfies the identity 
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 (𝑝 → 𝑞) ∨ (𝑠 → (𝑠 ⨂ (𝑟 → ((𝑞 → 𝑝) ⨂ 𝑟)))) = 𝟏 

 
(3.18) 

(c) ℰ satisfies 

(𝑝 → 𝑞) → 𝑢 ≤ (((𝑠 → (𝑠 ⨂ (𝑟 → ((𝑞 → 𝑝) ⨂ 𝑟)))) → 𝑢) → 𝑢) 
 

(3.19) 

(a) ℰ satisfies 

(𝑠 → (𝑠 ⨂ (𝑟 → ((𝑞 → 𝑝) ⨂ 𝑟)))) → 𝑢 ≤ ((𝑝 → 𝑞) → 𝑢) → 𝑢 (3.20) 

  

We have introduced some of the auxiliary results, so we can present the main 

goal as mentioned in the introduction: 

Theorem 3.4. ([7]) 

Let ℰ be a good EQ-algebra. The following statements are equivalent: 

(a) ℰ is representable. 

(b) ℰ satisfies (3.19), or equivalently (3.20). 

Remark 3.7. 

Although the representable good EQ-algebra  ℰ can be characterized by any 

of the (quasi-)identities or inequalities in Proposition 3.7; it was chosen to use 

the inequality (3.19), or equivalently (3.20), to avoid using " ∨ "; because the 

underlying poset 𝐸 of  ℰ don't need to be a join-semilattice. 

3.1.3 𝐄𝐐𝚫-algebras 

In [8], good EQ-algebras has been enriched with a unary operation "Δ" (the 

so-called Baaz delta) fulfilling some additional hypotheses, which is heavily 

used in fuzzy logic literature. Moreover, it is shown that the characterization 

theorem holds for the enriched algebra along the lines parallel to the 

characterization of representable good EQ-algebras (see [7]). 
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In this section, we will introduce the enriched good EQ-algebras with unary 

operation "Δ" fulfilling some additional hypotheses as in the following 

definition: 

Definition 3.8. ([8]) 

An EQ∆-algebra is an algebra 𝓔 = (𝐸, ∧, ⊗, ~, ∆, 𝟎, 𝟏) that is a good EQ-

algebra with a bottom element 0 expanded by a unary operation ∆: 𝐸 → 𝐸 

fulfilling the following axioms4: 

(E∆1)  ∆𝟏 = 𝟏; 

(E∆2)  ∆𝑎 ≤ 𝑎; 

(E∆3)  ∆𝑎 ≤ ∆∆𝑎; 

(E∆4)  ∆(𝑎 ∼ 𝑏) ≤ ∆𝑎 ∼ ∆𝑏; 

(E∆5)  ∆(𝑎 ∧ 𝑏) = ∆𝑎 ∧ ∆𝑏; 

(E∆6)  If  𝑎 ∨ 𝑏 and ∆𝑎 ∨ ∆𝑏 exist, then  ∆(𝑎 ∨ 𝑏) ≤ ∆𝑎 ∨ ∆𝑏; 

(E∆7)  ∆𝑎 ∨ ¬∆𝑎 = 𝟏 (i.e., 𝟏 is the unique upper bound in  𝐸 of the set 

{∆𝑎, ¬∆𝑎}). 

Example 3.4. ([5]) 

Consider 𝐸 = {𝟎, 𝑝, 𝑞, 𝑟, 𝟏} to be a five-element chain. Then 𝓔 = (𝐸, ∧, ∨,

⊗, ~, ∆, 𝟎, 𝟏)  is a linearly ordered EQ∆-algebra with the fuzzy equality and 

multiplication defined in Table 3-5 and Table 3-6 respectively. 

The "Δ" operation is defined by Δ(𝟏) = 𝟏 and Δ(𝑥) = 𝟎 otherwise in all 

linearly ordered EQ-algebras. Obviously, this algebra is non-commutative and 

non-residuated. Indeed, for example, 𝑟 ⊗ 𝑝 ≤ 𝟎 but 𝑟 ≰ 𝑝 → 𝟎 = 𝑝. 

                                                           
 

4 The Δ-axioms are from [8] 
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Theorem 3.14. ([8]) 

Let 𝓔 be a good EQ∆-algebra. 𝓔 is representable iff 𝓔 satisfies (3.19), or 

equivalently (3.20). 

3.1.4 Prelinear 𝐄𝐐𝚫-algebras 

In this section we introduce a subclass of EQ
Δ
-algebras, called prelinear EQΔ-

algebras, i.e. EQΔ-algebras satisfying prelinearity and the following two 

inequalities, for all 𝑝, 𝑞, 𝑟 ∈ 𝐸: 

(EΔ8) ∆(𝑝 ∼ 𝑞) ≤ (𝑝 ⊗ 𝑟) ∼ (𝑞 ⊗ 𝑟) 

(EΔ9) ∆(𝑝 ∼ 𝑞) ≤ (𝑟 ⊗ 𝑝) ∼ (𝑟 ⊗ 𝑞) 

As it has been presented in [5], the two inequalities (EΔ8) and (EΔ9) are 

necessary to assure good behavior of the multiplication " ⊗ " with respect to 

the classical equality, and they are surely necessary to develop also 

predicate EQ
Δ
-logic. If we omit "Δ"  in (EΔ8) and (EΔ9) then the resulting EQ-

algebra becomes residuated (see [8]). 

 

⨂ 𝟎 𝑝 𝑞 𝑟 𝟏 

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 

𝑝 𝟎 𝟎 𝟎 𝟎 𝑝 

𝑞 𝟎 𝟎 𝟎 𝑞 𝑞 

𝑟 𝟎 𝟎 𝟎 𝑟 𝑟 

𝟏 𝟎 𝑝 𝑞 𝑟 𝟏 

∼ 𝟎 𝑝 𝑞 𝑟 𝟏 

𝟎 𝟏 𝑝 𝟎 𝟎 𝟎 

𝑝 𝑝 𝟏 𝑝 𝑝 𝑝 

𝑞 𝟎 𝑝 𝟏 𝑞 𝑞 

𝑟 𝟎 𝑝 𝑞 𝟏 𝑟 

𝟏 𝟎 𝑝 𝑞 𝑟 𝟏 

Table 3-6 Multiplication of 

Example 3.4 

Table 3-5 Fuzzy equality of 

Example 3.4 
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Proposition 3.8. ([5]) 

The following properties are equivalent in each EQ
Δ
-algebra 𝓔: 

(a) 𝓔 is prelinear; 

(b) 𝓔 satisfies the following identity, for all 𝑝, 𝑞 ∈ 𝐸 

 Δ(𝑝 → 𝑞) ∨ Δ(𝑞 → 𝑝) = 𝟏 

 
(3.21) 

(c) 𝓔 satisfies the following inequality, for all 𝑝, 𝑞, 𝑟 ∈ 𝐸 

 (Δ(𝑝 → 𝑞) → 𝑟) ≤ (Δ(𝑞 → 𝑝) → 𝑟) → 𝑟 (3.22) 

Proposition 3.9. ([5]) 

The following properties are equivalent in each EQ
Δ
-algebra 𝓔: 

(a) 𝓔 satisfies the following inequalities, for all 𝑝, 𝑞, 𝑟 ∈ 𝐸 

 
Δ(𝑝 → 𝑞) ≤ (𝑝 ⊗ 𝑟) → (𝑞 ⊗ 𝑟) 

 Δ(𝑝 → 𝑞) ≤ (𝑟 ⊗ 𝑝) → (𝑟 ⊗ 𝑞) 
(3.23) 

(b) 𝓔 satisfies the following inequalities, for all 𝑝, 𝑞, 𝑟 ∈ 𝐸 

 Δ𝑞 ≤ 𝑟 → (𝑞 ⊗ 𝑟) and Δ𝑞 ≤ 𝑟 → (𝑟 ⊗ 𝑞) (3.24) 

(c) 𝓔 satisfies the following inequality, for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐸 

 Δ𝑞 ≤ (𝑠 → (𝑠 ⊗ (𝑟 → (𝑞 ⊗ 𝑟)))) (3.25) 

Furthermore, if we suppose that 𝓔 is prelinear, then any one of the above 

inequalities (hence all) is equivalent to both (EΔ8) and (EΔ9). 

Definition 3.9. ([5]) 

A prelinear EQ∆-algebras is an algebra  𝓔 = (𝐸, ∧, ⊗, ~, ∆, 𝟎, 𝟏) that is a 

good non-commutative and bounded EQ-algebra with a bottom element 𝟎 and 
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a top element 𝟏 expanded by a unary operation ∆: 𝐸 → 𝐸 fulfilling the 

following axioms: 

(P∆1)  ∆𝟏 = 𝟏; 

(P∆2)  ∆𝑝 ≤ ∆∆𝑝; 

(P∆3)  ∆(𝑝 → 𝑞) ≤ ∆𝑝 → ∆𝑞; 

(P∆4)  (Δ(𝑝 → 𝑞) → 𝑟) ≤ (Δ(𝑞 → 𝑝) → 𝑟) → 𝑟; 

(P∆5)  Δ𝑞 ≤ (𝑠 → (𝑠 ⊗ (𝑟 → (𝑞 ⊗ 𝑟)))); 

(P∆6)  ∆𝑝 ∨ ¬∆𝑝 = 𝟏 (i.e., 1 is the unique upper bound in 𝐸 of the set 

           {∆𝑎, ¬∆𝑎}). 

Corollary 3.1. ([5]) 

Prelinear EQ∆-algebras are exactly EQ∆-algebra satisfying prelinearity, (EΔ8) 

and (EΔ9). 

Theorem 3.5. ([5]) (Representation theorem).  

Each prelinear EQΔ-algebra is representable. 

3.2 Basic EQ-Logic 

In this section, we present a propositional EQ-logic introduced by M. Dyba 

and V. Novak [6] which is called basic. This logic is the simplest logic based 

on a special algebra of truth values called good EQ-algebra introduced by V. 

Novak in [23] as the algebraic semantics. 

3.2.1 Syntax of Basic EQ-Logic 

Definition 3.10. ([6]) (Basic EQ-Logic language) 

The basic EQ-logic language consists of propositional variables 𝑝, 𝑞, …, 

binary connectives ∧, &, ≡  and a truth (logical) constant ⊤. Implication is a 

derived connective defined by: 
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 𝑃 ⇒ 𝑄 ≔ 𝑃 ≡ (𝑃 ∧ 𝑄) (3.26) 

   

Let 𝒯 be a language of basic EQ-logic and 𝐹𝒯 stands for the set of all formulas 

for the given language is 𝒯. 

3.2.2 Logical Axioms and Inference Rules 

The following formulae are axioms of the Basic EQ-logic which are 

introduced in [6]: 

(A1)   (𝑃 ≡ ⊤) ≡ 𝑃 

(A2)   𝑃 ∧ 𝑄 ≡ 𝑄 ∧ 𝑃 

(A3)   (𝑃⧠𝑄)⧠𝑅 ≡ 𝑃⧠(𝑄⧠𝑅)       where ⧠ ∈ {&,  ∧ } 

(A4)   𝑃 ∧ 𝑃 ≡ 𝑃 

(A5)   (⊤& 𝑃) ≡ 𝑃 

(A6)   (𝑃 ⧠ ⊤) ≡ 𝑃                         where ⧠ ∈ {&,  ∧ } 

(A7)   ((𝑃∧ 𝑄)&𝑅) ⇒ (𝑄&𝑅) 

(A8)   (𝑅&(𝑃 ∧ 𝑄)) ⇒ (𝑅&𝑄) 

(A9)   (((𝑃 ∧ 𝑄) ≡ 𝑅)&(𝑆 ≡ 𝑃) ⇒ (𝑅 ≡ (𝑆 ∧ 𝑄))) 

(A10) (𝑃 ≡ 𝑄)&(𝑅 ≡ 𝑆) ⇒ ((𝑃 ≡ 𝑅) ≡ (𝑆 ≡ 𝑄)) 

(A11) (𝑃 ⇒ (𝑄 ∧ 𝑅)) ⇒ (𝑃 ⇒ 𝑄) 

The Inference rules of Basic EQ-logic are Leibniz rule (Leib) and Equanimity 

rule (EA). 

A theory T over Basic EQ-logic is any subset  𝑇 ⊆ 𝐹𝒯 of formulas called 

special axioms (also non-logical axioms). 𝑇 ⊢ 𝐴 denotes the sentence “𝑃 is 

provable in 𝑇” or “𝑇 proves 𝑃”. 
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3.2.3 Fundamental Properties of Basic EQ-logic 

The following lemma illustrate the fundamental properties of the basic EQ-

logic that have been presented in [6]. 

Lemma 3.7. ([6]) 

The following properties hold in the basic EQ-logic: 

(a) 𝑃 ⊢ 𝑃 ≡ ⊤, and  𝑃 ≡ ⊤ ⊢ 𝑃                         (Rule (T1),(T2) respectively) 

(b) 𝑃 ∧ 𝑆 ≡ 𝑅, 𝑃 ≡ 𝑄 ⊢ 𝑄 ∧ 𝑆 ≡ 𝑅                                                  (Rule (C)) 

(c) (𝑃 ≡ 𝑆) ≡ 𝑅, 𝑃 ≡ 𝑄 ⊢ (𝑄 ≡ 𝑆) ≡ 𝑅                                         (Rule (D)) 

(d) 𝑃&𝑆 ≡ 𝑅, 𝑃 ≡ 𝑄 ⊢ 𝑄&𝑆 ≡ 𝑅                                                    (Rule (E)) 

(e) 𝑆&𝑃 ≡ 𝑅, 𝑃 ≡ 𝑄 ⊢ 𝑆&𝑄 ≡ 𝑅                                                    (Rule (F)) 

3.2.4 Semantics of Basic EQ-Logic 

Definition 3.11. ([6]) 

A truth evaluation 𝑒: 𝐹𝒯 → 𝐸 is defined as follows: if  𝑝 ∈ 𝐹𝒯 is a propositional 

variable, then  𝑒(𝑝) ∈  𝐸, Furthermore, 

𝑒(⊤) = 𝟏; 

𝑒(𝑃 ∧ 𝑄) = 𝑒(𝑃) ∧ 𝑒(𝑄); 

𝑒(𝑃&𝑄) = 𝑒(𝑃) ⊗ 𝑒(𝑄); 

𝑒(𝑃 ≡ 𝑄) = 𝑒(𝑃) ~ 𝑒(𝑄). 

for all formulas  𝑃, 𝑄 ∈ 𝐹𝒯. A formula 𝑃 ∈ 𝐹𝒯 is a tautology if 𝑒(𝑃) = 𝟏 for 

each truth evaluation 𝑒: 𝐹𝒯 → 𝐸. 

Notice that semantics of Basic EQ-logic is formed by means of good, non-

commutative EQ-algebras. 

Lemma 3.8. ([6]) 

All axioms of the basic EQ-logic are tautologies. 
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Lemma 3.9. ([6]) 

The inference rules of basic EQ-logic are sound in the following sense: 

Let 𝑒: 𝐹𝒯 → 𝐸 be a truth evaluation where 𝐸 is a support of a good non-

commutative EQ-algebra: 

(a) If  𝑒(𝑃) = 𝟏 and  𝑒(𝑃 ≡ 𝑄) = 𝟏 then  𝑒(𝑄) = 𝟏. 

(b) If  𝑒(𝑄 ≡ 𝑅) = 𝟏 then  𝑒(𝑃[𝐩: = 𝑄] = 𝑃[𝐩: = 𝑅]) = 𝟏 for any 

formula 𝑃. 

The following is standard procedure due to Lindenbaum and Tarski5, we now 

study and introduce the completeness of the basic EQ-logic [6]. 

Definition 3.12. ([6]) 

Put 

 𝑃 ≈ 𝑄 iff ├ 𝑃 ≡ 𝑄,   𝑃, 𝑄 ∈ 𝐹𝒯 (3.27) 

   

The relation  " ≈ " is an equivalence on  𝐹𝒯. Let us denote by  [𝑃] an 

equivalence class of 𝑃 and put 

      𝐸̅ = {[𝑃]| 𝑃 ∈ 𝐹𝒯}  where  [𝑃] = {𝑄| ├ 𝑃 ≡ 𝑄. 

Finally, we define 

𝟏 = [⊤] 

[𝑃] ∧ [𝑄] = [𝑃 ∧ 𝑄] 

[𝑃] ⊗ [𝑄] = [𝑃&𝑄] 

               [𝑃] ∼ [𝑄] = [𝑃 ≡ 𝑄] 

                                                           
 

5 The Lindenbaum–Tarski algebra is the quotient algebra obtained by factoring the algebra 

of formulas by the congruence relation. 
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Lemma 3.10. ([6]) 

The algebra  ℰ̅ =(𝐸̅, ∧, ⊗, ~, 𝟏) is a good non commutative EQ-algebra. 

Theorem 3.6. ([6]) (Soundness) 

The basic EQ-logic is sound. 

Theorem 3.7. ([6]) (Completeness) 

The following is equivalent for every formula 𝑃: 

(a) ├ 𝑃 

(b) 𝑒(𝑃) = 𝟏 for every good non-commutative EQ-algebra  ℰ and a truth 

evaluation 𝑒: 𝐹𝒯 → 𝐸. 

3.3 Prelinear 𝐄𝐐𝚫-Logic 

In this section, we introduce a complete propositional calculus for 

prelinear EQΔ-algebras which is developed in [5]. It is called prelinear EQ𝚫-

logic. 

3.3.1 Syntax of Prelinear 𝐄𝐐𝚫-Logic 

The language of prelinear EQ
Δ
-logic is the same as that of the basic EQ-logic 

extended by the unary connective " 𝚫 " and the truth constant " ⊥ ". Let 𝐹𝒯 

denote the set of all formulas for the given language  𝒯. This logic is defined 

on the basis of a prelinear EQ
Δ
-algebra of truth values. Further definable 

connectives are 

 𝑃 ∨ 𝑄 ≔ ((𝑃 ⇒ 𝑄) ⇒ 𝑄) ∧ ((𝑄 ⇒ 𝑃) ⇒ 𝑃) (3.28) 

 

 ¬𝑃 ≔  𝑃 ⇒⊥ (3.29) 
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3.3.2 Logical Axioms and Inference Rules 

The logical axioms of the prelinear EQ
Δ

-logic are the logical axioms (A1), 

(A2),…, (A11) of the basic EQ-logic plus the following ones: 

(A12)  (𝑃 ∧ ⊥) ≡ ⊥ 

(A𝚫0)  𝚫⊤ 

(A𝚫1)  𝚫𝑃 ⇒ 𝚫𝚫𝑃 

(A𝚫2)  𝚫(𝑃 ⇒ 𝑄) ⇒ (𝚫𝑃 ⇒ 𝚫𝑄) 

(A𝚫3)  (𝚫(𝑃 ⇒ 𝑄) ⇒ 𝑅) ⇒ ((𝚫(𝑄 ⇒ 𝑃) ⇒ 𝑅) ⇒ 𝑅) 

(A𝚫4)  (𝚫𝑃 ⇒ ¬𝚫𝑃) ⇒ ¬𝚫𝑃 

(A𝚫5)  (¬𝚫𝑃 ⇒ 𝚫𝑃) ⇒ 𝚫𝑃 

(A𝚫6)  𝚫𝑄 ⇒ (𝑇 ⇒ (𝑇&(𝑅 ⇒ (𝑄&𝑅)))) 

Inference rules of the prelinear EQ
Δ
-logic are the same as that of the basic EQ-

logic, i.e. they are equanimity rule (EA) and Leibniz rule (Leib). 

The theorems and inferences of the basic EQ-logic remain valid in extension 

of the prelinear EQ
Δ
-logic, since the prelinear EQ

Δ
-logic is an extension of the 

basic EQ-logic. 

3.3.3 Semantics of Prelinear 𝐄𝐐𝚫-Logic 

It's been explained that the semantical domain for the prelinear EQ𝚫-logic is 

the class of all prelinear EQΔ-algebras. In this section, we introduce the general 

and chain completeness of prelinear  EQ𝚫-logic for the variety of prelinear 

EQΔ-algebras which have been established in [5], i.e. completeness of the 

whole variety and the class of chains of the variety, respectively. 

Definition 3.13. ([5]) 

Interpretation of the prelinear EQ𝚫-logic is a tuple ℜ = (𝓔, 𝑒) in which 𝓔 =

(𝐸, ∧, ⊗, ~, Δ, 𝟎, 𝟏) is a prelinear EQΔ-algebra and a function 𝑒: 𝐹𝒯 → 𝐸, 
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called the truth evaluation of the interpretation that satisfies the following 

identities for all formulas  𝑃, 𝑄 ∈ 𝐹𝒯: 

𝑒(⊤) = 𝟏,      𝑒(⊥) = 𝟎, 

𝑒(𝑃 ∧ 𝑄) = 𝑒(𝑃) ∧ 𝑒(𝑄), 

𝑒(𝑃&𝑄) = 𝑒(𝑃) ⊗ 𝑒(𝑄), 

𝑒(𝑃 ≡ 𝑄) = 𝑒(𝑃) ∼ 𝑒(𝑄), 

𝑒(𝚫𝑃) = Δ𝑒(𝑃). 

If  𝑒(𝑃) = 𝟏 in an interpretation ℜ then 𝑃 is said to be valid (or, true) in ℜ, 

and we write ℜ ⊨ 𝑃. 

Let  𝑇 be a theory and  ℜ = (𝓔, 𝑒) be an interpretation, then 

If  ℜ ⊨ 𝑃 for all 𝑃 ∈ 𝑇, we write ℜ ⊨ 𝑇, 

and we say that ℜ is a 𝓔-model of  𝑇. 

If for every interpretation ℜ such that  ℜ ⊨ 𝑇 we have  ℜ ⊨ 𝑃, then we 

write 𝑇 ⊨ 𝑃. If  ℜ ⊨ 𝑃 for all the interpretations ℜ, 𝑃 is called universally 

valid (or, a tautology), and we write ⊨ 𝑃. 

The following is standard procedure due to Lindenbaum and Tarski, we now 

study and introduce the completeness of the prelinear EQ𝚫-logic. 

Let  𝑇 be a theory over the prelinear EQ𝚫-logic. Then consider the relation 

(3.27). We explain that (3.27) is an equivalence relation on 𝐹𝒯. 

Let  𝜌: 𝐹𝒯 → 𝐹𝒯 ≈⁄   be the quotient map onto the set of all equivalence classes 

|𝑃| = {𝑄| 𝑇├ 𝑃 ≡ 𝑄}. The Leibniz rule (Leib) guarantees that the logical 

connectives possess the substitution property for " ≈ ". In consequence, the 

following operations are well-defined on the set 𝐸̅ = {|𝑃|| 𝑃 ∈ 𝐹𝒯}: 
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|𝑃| ∧𝑇 |𝑄| = 𝑞(𝑃 ∧ 𝑄), 

|𝑃| ⊗𝑇 |𝑄| = 𝑞(𝑃&𝑄), 

|𝑃|~𝑇|𝑄| = 𝑞(𝑃 ≡ 𝑄), 

Δ𝑇|𝑃| = 𝑞(𝚫𝑃). 

The partial order ≤ is also well-defined on 𝐹𝒯 ≈⁄  by 

 

Let 𝓔𝑇 = (𝐸̅, ∧𝑇 , ⊗𝑇 , ~𝑇 , Δ𝑇 , 𝟎𝑇 , 𝟏𝑇) be the Lindenbaum algebra of the 

theory  𝑇, where 𝟏𝑇 =  𝜌(⊤), 𝟎𝑇 = 𝜌(⊥). 𝓔𝑇 is a good non-commutative EQ-

algebra (see also Lemma 3.10) and the top element 𝟏𝑇 is exactly the 

equivalence class {𝑃 ∈ 𝐹𝒯| 𝑇├ 𝑃}. It is bounded (by Axiom (A12)) and its 

partial order is its lattice order. Hence, by Axioms (AΔ0)-(AΔ6), 𝓔𝑇 is a 

prelinear EQΔ-algebra. Moreover, the quotient map is a truth evaluation. From 

these arguments with the representation theorem (Theorem 3.5), we conclude 

the following theorem. 

Theorem 3.8. ([5]) (Completeness) 

The prelinear EQ𝚫-logic is generally complete and chain complete for the 

variety of prelinear EQΔ-algebras. Specifically, for every formula  𝑃 ∈ 𝐹𝒯 and 

for every theory  𝑇 over the prelinear EQ𝚫-logic, the following are equivalent: 

(a) 𝑇├  𝑃. 

(b) For each prelinear EQΔ-algebra 𝓔 and each 𝓔-model ℜ of  𝑇, ℜ ⊨ 𝑃. 

(c) For each linearly ordered EQΔ-algebra 𝓔 and each 𝓔-model ℜ of  𝑇,ℜ ⊨

𝑃. 

 

 
|𝑃| ≤ |𝑄| iff  |𝑃| ∧𝑇 |𝑄| = |𝑃| iff  𝑇├ (𝑃 ∧ 𝑄) ≡ 𝑃  

iff  𝑇├ 𝑃 ⇒ 𝑄 
(3.30) 
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Theorem 3.9. ([5]) (Deduction theorem) 

For each theory  𝑇, formula 𝑃 and arbitrary formula 𝑄 it holds that: 

𝑇 ∪ {𝑃}├ 𝑄 iff  𝑇 ⊢ 𝚫𝑃 ⇒ 𝑄. 
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𝓵𝐄𝐐𝚫
𝐬 -Algebras 

In this chapter, we introduce and study a class of separated lattice EQ-algebras 

that may be represented as subalgebras of products of linearly ordered ones. 

Such algebras are called representable. Namely, we enrich separated lattice 

EQ-algebras with a unary operation (the so called Baaz delta), fulfilling some 

additional assumptions. The resulting algebras are called ℓEQΔ
s -algebras. One 

of the main results of this chapter is to characterize the class of representable 

ℓEQΔ
s -algebras. We also supply a number of useful results, leading to this 

characterization. 

4.1 Definition and Fundamental Properties 

Definition 4.1. 

A ℓEQΔ
s -algebra is an algebra ℰΔ = (𝐸, ∧, ∨, ⊗, ∼, Δ, 𝟎, 𝟏) that is separated 

ℓEQ-algebra with a bottom element 𝟎 expanded by a unary operation Δ: 𝐸 →

𝐸 fulfilling the following axioms: 

(EsΔ1)    Δ𝟏 = 𝟏; 

(EsΔ2)    Δ𝑝 ≤ 𝑝; 

(EsΔ3)    Δ𝑝 ≤ ΔΔ𝑝; 

(EsΔ4)    Δ(𝑝 ∼ 𝑞) ≤ Δ𝑝 ∼ Δ𝑞; 

(EsΔ5)    Δ(𝑝 ∧ 𝑞) = Δ𝑝 ∧ Δ𝑞; 

(EsΔ6)    Δ(𝑝 ∨ 𝑞) ≤ Δ𝑝 ∨ Δ𝑞; 

(EsΔ7)    Δ𝑝 ∨ ¬Δ𝑝 = 𝟏; 

(EsΔ8)    Δ(𝑝 ∼ 𝑞) ≤ (𝑝 ⊗ 𝑟) ∼ (𝑞 ⊗ 𝑟); 

(EsΔ9)    Δ(𝑝 ∼ 𝑞) ≤ (𝑟 ⊗ 𝑝) ∼ (𝑟 ⊗ 𝑞). 
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Remark 4.1. 

The axioms (EsΔ1), (EsΔ2),…,(EsΔ7) are from [8] (see Definition 3.8) and the 

two inequalities (EsΔ8) and (EsΔ9) are from [5] (see section 3.1.4) . They are 

necessary to assure good behavior of the multiplication " ⊗ " with respect to 

the crisp equality. If we omit "Δ"  in (EsΔ8) and (EsΔ9) then the resulting EQ-

algebra becomes residuated. 

Lemma 4.1. 

Let ℰΔ be a ℓEQΔ
s
-algebra. For all 𝑝, 𝑞, 𝑟 ∈ 𝐸, it holds that: 

(a) If  𝑝 ≤ 𝑞, then  Δ𝑝 ≤ Δ𝑞; 

(b) Δ(𝑝 → 𝑞) ≤ Δ𝑝 → Δ𝑞; 

(c) Δ(𝑝 ∨ 𝑞) = Δ𝑝 ∨ Δ𝑞; 

(d) ΔΔ𝑝 = Δ𝑝; 

(e) 𝑝 ⊗ Δ(𝑝 → 𝑞) ≤ 𝑞, Δ(𝑝 → 𝑞) ⊗ 𝑝 ≤ 𝑞; 

(f) 𝑝 ⊗ Δ(𝑝 ∼ 𝑞) ≤ 𝑞, Δ(𝑝 ∼ 𝑞) ⊗ 𝑝 ≤ 𝑞; 

(g) Δ(𝑝 ∼ 𝟏) = Δ𝑝, and  Δ(𝟏 → 𝑝) = Δ𝑝; 

(h) Δ𝑞 ≤ 𝑟 → (𝑞 ⊗ 𝑟), and Δ𝑞 ≤ 𝑟 → (𝑟 ⊗ 𝑞); 

(i) Δ𝑝 = Δ𝑝 ⊗ Δ𝑝; 

(j) Δ𝑝 ≤ Δ𝑞 → Δ𝑟 iff  Δ𝑝 ⊗ Δ𝑞 ≤ Δ𝑟 and Δ𝑞 ⊗ Δ𝑝 ≤ Δ𝑟; 

(k) If ℰΔ is prelinear, then Δ(𝑝 → 𝑞) ∨ Δ(𝑞 → 𝑝) = 𝟏; 

(l) Δ(𝑝 → 𝑞) ≤ (𝑝 ⊗ 𝑟) → (𝑞 ⊗ 𝑟), and Δ(𝑝 → 𝑞) ≤ (𝑟 ⊗ 𝑝) → (𝑟 ⊗ 𝑞). 

Proof. 

(a): Assume 𝑝 ≤ 𝑞 (𝑝 ∧ 𝑞 = 𝑝). Hence, by (EsΔ5), we have  

      Δ(𝑝 ∧ 𝑞) = Δ𝑝 ∧ Δ𝑞 = Δ𝑝; that is  Δ𝑝 ≤ Δ𝑞. 

(b): From (EsΔ4) and (EsΔ5), we get 
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      ∆(𝑝 → 𝑞) = Δ((𝑝 ∧ 𝑞) ∼ 𝑝) ≤ ∆(𝑝 ∧ 𝑞) ∼ ∆𝑞 = (∆𝑝 ∧ Δ𝑞) ∼ ∆𝑞 

                                                                                  = ∆𝑝 → ∆𝑞. 

(c): From item (a) (because 𝑝, 𝑞 ≤ 𝑝 ∨ 𝑞), we can have, Δ𝑝, Δ𝑞 ≤ Δ(𝑝 ∨ 𝑞). 

Therefore, Δ𝑝 ∨ Δ𝑞 ≤ Δ(𝑝 ∨ 𝑞). Hence, by this and (EsΔ6), the result holds. 

(d): Direct from (EsΔ2) with item (a), we obtain ΔΔ𝑝 ≤ Δ𝑝. Hence, by this and 

(EsΔ3), the result holds. 

(e): From (EsΔ2), Lemma 3.1(g) and the order properties of " → ", we get 

      Δ(𝑝 → 𝑞) ≤ (𝑝 → 𝑞) ≤ (𝑝 ⊗ Δ(𝑝 → 𝑞)) → 𝑞, 

     ¬Δ(𝑝 → 𝑞) = Δ(𝑝 → 𝑞) → 𝟎 ≤ Δ(𝑝 → 𝑞) → 𝑞 ≤ (𝑝 ⊗ Δ(𝑝 → 𝑞)) → 𝑞 

(since 𝟎 ≤ 𝑞). Thus, by (EsΔ7) and Proposition 3.1, 

       (𝑝 ⊗ Δ(𝑝 → 𝑞)) → 𝑞 = 𝟏; that is (𝑝 ⊗ Δ(𝑝 → 𝑞)) ≤ 𝑞. 

Similarly, Δ(𝑝 → 𝑞) ⊗ 𝑝 ≤ 𝑞. 

(f): Directly from item (e) by Lemma 3.1(h). 

(g): By item (d), (EsΔ4) and item (f), we get 

     Δ(𝑝 ∼ 𝟏) = ΔΔ(𝑝 ∼ 𝟏) = 𝟏 ⊗ ΔΔ(𝟏 ∼ 𝑝) ≤ Δ𝟏 ⊗ Δ(Δ𝟏 ∼ Δ𝑝) ≤ Δ𝑝. 

On the other hand, Δ𝑝 ≤ Δ(𝑝 ∼ 𝟏) by item (a) (since 𝑝 ≤ (𝑝 ∼ 𝟏)). 

In particular, Δ(𝟏 → 𝑝) = Δ((𝟏 ∧ 𝑝) ∼ 𝟏) = Δ(𝑝 ∼ 𝟏) = Δ𝑝. 

(h): From item (g), (EsΔ8) and Lemma 3.1(h), we get 

      Δ𝑞 = Δ(𝟏 ∼ 𝑞) ≤ (𝟏 ⊗ 𝑟) ∼ (𝑞 ⊗ 𝑟) ≤ (𝟏 ⊗ 𝑟) → (𝑞 ⊗ 𝑟) 

                                                                     = 𝑟 → (𝑞 ⊗ 𝑟). 

Similarly, Δ𝑞 ≤ 𝑟 → (𝑟 ⊗ 𝑞). 
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(i): By item (h), item (d) and order properties of " → ", we obtain 

      Δ𝑝 = ΔΔ𝑝 ≤ Δ𝑝 → (Δ𝑝 ⊗ Δ𝑝) and 

     ¬Δ𝑝 = Δ𝑝 → 𝟎 ≤ Δ𝑝 → (Δ𝑝 ⊗ Δ𝑝) 

(since 𝟎 ≤ (Δ𝑝 ⊗ Δ𝑝)). Thus, by (EsΔ7) and Proposition 3.1, Δ𝑝 → (Δ𝑝 ⊗

Δ𝑝) = 𝟏; that is Δ𝑝 ≤ (Δ𝑝 ⊗ Δ𝑝). On the other hand, (Δ𝑝 ⊗ Δ𝑝) ≤ Δ𝑝 by 

Lemma 3.1(g). 

(j): Assume Δ𝑝 ≤ Δ𝑞 → Δ𝑟, then by Lemma 3.1(g) and the order properties 

of  " → ", 

      Δ𝑝 ≤ Δ𝑞 → Δ𝑟 ≤ (Δ𝑝 ⊗ Δ𝑞) → Δ𝑟 and 

      ¬Δ𝑝 = Δ𝑝 → 𝟎 ≤ Δ𝑝 → Δ𝑟 ≤ (Δ𝑝 ⊗ Δ𝑞) → Δ𝑟. 

Thus, by (EsΔ7), and Proposition 3.1, (Δ𝑝 ⊗ Δ𝑞) → Δ𝑟 = 𝟏; that is (Δ𝑝 ⊗

Δ𝑞) ≤ Δ𝑟. Similarly, (Δ𝑞 ⊗ Δ𝑝) ≤ Δ𝑟. Conversely, assume (Δ𝑝 ⊗ Δ𝑞) ≤

Δ𝑟. Hence, by item (d) and item (h), we obtain 

      Δ𝑝 = ΔΔ𝑝 ≤ Δ𝑞 → (Δ𝑝 ⊗ Δ𝑞) ≤ Δ𝑝 → Δ𝑟. 

Similarly, for (Δ𝑞 ⊗ Δ𝑝) ≤ Δ𝑟. 

(k): By (EsΔ1), the prelinearity and item (c), we get 

      𝟏 = Δ𝟏 = Δ((𝑝 → 𝑞) ∨ (𝑞 → 𝑝)) = Δ(𝑝 → 𝑞) ∨ Δ(𝑞 → 𝑝).  

(l): Using (EsΔ8) and the order properties of  " → ", we have 

      ∆(𝑝 → 𝑞) = ∆((𝑝 ∧ 𝑞) ∼ 𝑝) ≤ ((𝑝 ∧ 𝑞) ⊗ 𝑟) ∼ (𝑝 ⊗ 𝑟) 

                                                     ≤ (𝑝 ⊗ 𝑟) → ((𝑝 ∧ 𝑞) ⊗ 𝑟) 

                                                     ≤ (𝑝 ⊗ 𝑟) → (𝑞 ⊗ 𝑟). 

Similarly, ∆(𝑝 → 𝑞) ≤ (𝑟 ⊗ 𝑝) → (𝑟 ⊗ 𝑞).                                                 ∎ 
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Theorem 4.1. 

The class of ℓEQΔ
s -algebras is a variety. 

Proof. 

Just note that the separateness axiom (i.e., 𝑝 ≤ 𝑞 iff 𝑝 → 𝑞 = 𝟏 for all 𝑝, 𝑞 ∈

𝐸) is equivalent to the identity 𝑝 ⊗ Δ(𝑝 → 𝑞) ≤ 𝑞, this can be seen as follows: 

Assume 𝑝 ⊗ Δ(𝑝 → 𝑞) ≤ 𝑞 and let 𝑝 → 𝑞 = 𝟏, then 

      𝑝 = 𝑝 ⊗ 𝟏 = 𝑝 ⊗ Δ𝟏 = 𝑝 ⊗ Δ(𝑝 → 𝑞) ≤ 𝑞. 

Hence, by Lemma 4.1(e) the result holds. Note that we have 𝑝 ≤ 𝑞 iff 𝑝 ∧ 𝑞 =

𝑝. Hence, all the other properties stated in Definition 3.3 and Definition 4.1 

can be expressed using equations (see Theorem 3.1).                                                  ∎ 

4.2 Filters in 𝓵𝐄𝐐𝚫
𝐬 -algebras 

Definition 4.2. 

Let ℰΔ = (𝐸, ∧, ∨, ⊗, ∼, Δ, 𝟎, 𝟏) be a ℓEQΔ
s -algebra. A subset 𝐹 ⊆ 𝐸 is 

called a filter of ℰΔ if for all 𝑝, 𝑞 ∈ 𝐸: 

(a) 𝟏 ∈ 𝐹. 

(b) if 𝑝, 𝑝 → 𝑞 ∈ 𝐹, then 𝑞 ∈ 𝐹. 

(c) if 𝑝 ∈ 𝐹, then Δ𝑝 ∈ 𝐹. 

Remark 4.2. 

A (prime) filer  𝐹 on a ℓEQΔ
s -algebra ℰΔ = (𝐸, ∧, ∨, ⊗, ∼, Δ, 𝟎, 𝟏) is a 

(prime) prefilter (in the sense of given in [8]) on its separated EQ-algebra ℰ =

(𝐸, ∧, ⊗, ∼, 𝟏) satisfying (c) (see Definition 3.5). So all the properties of 

(prime) prefilters on it separated EQ-algebra (see [7, 8]) are also properties of 

(prime) filters on a ℓEQΔ
s -algebra, including the following result: 
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Lemma 4.2. 

Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. For all 𝑝, 𝑞 ∈ 𝐸 it holds that: 

(a) If 𝑝 ∈ 𝐹 and 𝑝 ≤ 𝑞 then 𝑞 ∈ 𝐹; 

(b) If 𝑝, 𝑝 ∼ 𝑞 ∈ 𝐹 then 𝑞 ∈ 𝐹; 

(c) If 𝑝, 𝑞 ∈ 𝐹 then 𝑝 ∧ 𝑞 ∈ 𝐹. 

Proof. 

(a) From Lemma 3.1(e), it follows that 𝑝 → 𝑞 = 𝟏. The properties (a) and (b) 

in Definition 3.5 of a prefilter imply that 𝑝 → 𝑞 ∈ 𝐹 and then 𝑞 ∈ 𝐹. 

(b) Due to Lemma 3.1(h), it holds that 𝑝 ∼ 𝑞 ≤ 𝑝 → 𝑞. From item (a), it then 

follows that 𝑝 → 𝑞 ∈ 𝐹, so the property (b) in Definition 3.5 of a prefilter 

implies that 𝑞 ∈ 𝐹. 

(c) From Lemma 3.1(j) and Lemma 3.1(n), it follows that 𝑞 ≤ 𝑝 → 𝑞 = 𝑝 →

𝑝 ∧ 𝑞. From item (a), it then follows that 𝑝 → 𝑝 ∧ 𝑞 and hence, by the property 

(b) in Definition 3.5 of a prefilter, 𝑝 ∧ 𝑞 ∈ 𝐹.                                                                 ∎ 

Lemma 4.3. 

Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. For all 𝑝, 𝑞, 𝑟, 𝑝′, 𝑞′ ∈ 𝐸 such that 𝑝 ∼

𝑞 ∈ 𝐹 and 𝑝′ ∼ 𝑞′ ∈ 𝐹, it holds that 

(a) If 𝑝 → 𝑞 ∈ 𝐹, then (𝑝 ⊗ 𝑟) → (𝑞 ⊗ 𝑟) ∈ 𝐹 and (𝑟 ⊗ 𝑝) → (𝑟 ⊗ 𝑞) ∈ 𝐹 

(b) If  𝑝, 𝑞 ∈ 𝐹  then  𝑝 ⊗ 𝑞 ∈ 𝐹; 

(c) (𝑝 ⊗ 𝑝′) ∼ (𝑞 ⊗ 𝑞′) ∈ 𝐹 and (𝑝′ ⊗ 𝑝) ∼ (𝑞′ ⊗ 𝑞) ∈ 𝐹; 

(d) (Δ𝑝 ∼ Δ𝑞) ∈ 𝐹. 
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Proof. 

(a): Assume 𝑝 → 𝑞 ∈ 𝐹. Since 𝐹 is a filter, then Δ(𝑝 → 𝑞) ∈ 𝐹. Hence, by 

Lemma 4.1(l) and Lemma 4.2(a), we get 

      Δ(𝑝 → 𝑞) ≤ (𝑝 ⊗ 𝑟) → (𝑞 ⊗ 𝑟) ∈ 𝐹. 

Similarly, (𝑟 ⊗ 𝑝) → (𝑟 ⊗ 𝑞) ∈ 𝐹. 

(b): From Lemma 3.1(j) and Lemma 4.2(a), it follows that 𝑞 ≤ 𝟏 →  𝑞 ∈ 𝐹. 

From item (a), it then follows that 

      (𝑝 ⊗ 𝟏) → (𝑝 ⊗ 𝑞) = 𝑝 → (𝑝 ⊗ 𝑞) ∈ 𝐹. 

Hence, by Definition 4.2 of a filter, 𝑝 ⊗ 𝑞 ∈ 𝐹. 

(c): By Definition 4.2, Δ(𝑝 ∼ 𝑞) and Δ(𝑝′ ∼ 𝑞′) ∈ 𝐹. Thus, by (EsΔ8) and 

(EsΔ9), we get 

      Δ(𝑝 ∼ 𝑞) ⊗ Δ(𝑝′ ∼ 𝑞′) ≤ 

                                   ≤ ((𝑝 ⊗ 𝑝′) ∼ (𝑞 ⊗ 𝑝′)) ⊗ ((𝑞 ⊗ 𝑝′) ∼ (𝑞 ⊗ 𝑞′)) 

                                   ≤ (𝑝 ⊗ 𝑝′) ∼ (𝑞 ⊗ 𝑞′) 

Hence, by Lemma 4.2(a) and item (b), the result holds. Similarly, (𝑝′ ⊗ 𝑝) ∼

(𝑞′ ⊗ 𝑞) ∈ 𝐹. 

(d): By Definition 4.2 and Lemma 4.2(a) 

      Δ(𝑝 ∼ 𝑞) ∈ 𝐹 implies Δ𝑝 ∼ Δ𝑞 ∈ 𝐹 (since Δ(𝑝 ∼ 𝑞) ≤ Δ𝑝 ∼ Δ𝑞).           ∎ 

Lemma 4.4. 

Let ℰΔ be a ℓEQΔ
s -algebra. Given a filter 𝐹 ⊆ 𝐸, the following relation on ℰΔ 

is a congruence relation: 

 𝑝 ≈𝐹 𝑞  iff  𝑝 ∼ 𝑞 ∈ 𝐹 (4.1) 
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Proof. 

Indeed, Definition 3.3(E3), Lemma 3.1(a) and Lemma 3.1(b) guarantee that 

≈𝐹 is an equivalence relation. As an immediate consequence of Lemma 4.3, 

all the operations of  ℰΔ are compatible with the relation given by (4.1); that is  

𝑝 ≈𝐹 𝑞 and  𝑝′ ≈𝐹 𝑞′ imply (𝑝 ∧ 𝑝′) ≈𝐹 (𝑞 ∧ 𝑞′), (𝑝 ∨ 𝑝′) ≈𝐹 (𝑞 ∨ 𝑞′), 

(𝑝 ∼ 𝑝′) ≈𝐹 (𝑞 ∼ 𝑞′), (𝑝 ⊗ 𝑝′) ≈𝐹 (𝑞 ⊗ 𝑞′), and (Δ𝑝 ≈𝐹 Δ𝑞). 

Then, ≈𝐹 is a congruence relation.                                                                 ∎ 

Let ℰΔ be a  ℓEQΔ
s -algebra. For 𝑝 ∈ 𝐸, we denote its equivalence class with 

respect to  ≈𝐹 by  [𝑝]𝐹 and by 𝐸/𝐹 the quotient set associated with ≈𝐹. 

Furthermore, we define the factor algebra 

ℰΔ/𝐹 = 〈𝐸/𝐹, ∧𝐹 , ∨𝐹 , ⊗𝐹 , ∼𝐹 , Δ𝐹 , 𝟎𝐹 , 𝟏𝐹〉. 

in the standard way as follows: 

      𝐸/𝐹 = {[𝑝]𝐹| 𝑝 ∈ 𝐸}, and the binary operations on 𝐸/𝐹 are defined by 

[𝑝]𝐹 ∧𝐹 [𝑞]𝐹 = [𝑝 ∧ 𝑞]𝐹; 

[𝑝]𝐹 ∨𝐹 [𝑞]𝐹 = [𝑝 ∨ 𝑞]𝐹; 

[𝑝]𝐹 ∼𝐹 [𝑞]𝐹 = [𝑝 ∼ 𝑞]𝐹; 

[𝑝]𝐹 ⊗𝐹 [𝑞]𝐹 = [𝑝 ⊗ 𝑞]𝐹; 

Δ𝐹[𝑝]𝐹 = [Δ𝑝]𝐹. 

The top and the bottom elements are 𝟏𝐹 = [𝟏]𝐹 = {𝑞 ∈ 𝐸 | 𝑞 ∼ 𝟏 ∈ 𝐹} =

𝐹), 𝟎𝐹 = [𝟎]𝐹 = 𝟎, respectively. 

Also, we can define a binary relation " ≤𝐹 " on 𝐸/𝐹 as follows: 
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 [𝑝]𝐹 ≤𝐹 [𝑞]𝐹  iff  [𝑝]𝐹 ∧𝐹 [𝑞]𝐹 = [𝑝]𝐹  iff  𝑝 ∧ 𝑞 ≈𝐹 𝑝   

iff  𝑝 → 𝑞 ∈ 𝐹 

(4.2) 

Then, we have the following result. 

Theorem 4.2. 

Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. The factor algebra ℰΔ/𝐹 = 〈𝐸/𝐹, ∧𝐹,

∨𝐹 , ⊗𝐹 , ∼𝐹 , Δ𝐹 , 𝟎𝐹 , 𝟏𝐹〉 is a ℓEQΔ
s -algebra, and the mapping 𝑓: 𝐸 ⟶ 𝐸/𝐹 

defined by 𝑓(𝑝) = [𝑝]𝐹 is a homomorphism of ℰΔ. 

Proof. 

We first need to verify that  ℰΔ/𝐹 fulfills axioms (E1)-(E7) (see Definition 

3.3). Using the definition of the factor algebra and its operations above with 

the axioms (E1)-(E7), we get 

Axioms (E1) and (E2) are obvious. We demonstrate for instance the 

isotonicity of  " ⊗ ". Let [𝑝]𝐹 ≤𝐹 [𝑞]𝐹 and  [𝑟] ∈ 𝐸/𝐹. Then  𝑝 → 𝑞 ∈ 𝐹 and 

therefore, 𝑝 ⊗ 𝑟 → 𝑞 ⊗ 𝑟 ∈ 𝐹. Hence,  [𝑝]𝐹 ⊗𝐹 [𝑟]𝐹 ≤𝐹 [𝑞]𝐹 ⊗𝐹 [𝑟]𝐹. 

(E3): By definition [𝑝] ∼𝐹 [𝑝]𝐹 = [𝑝 ∼ 𝑝]𝐹 = [𝟏]𝐹 . 

(E4): Axiom (E4) in  ℰΔ states that  ((𝑝 ∧ 𝑞) ∼ 𝑟) ⊗ (𝑠 ∼ 𝑝) ≤ 𝑟 ∼ (𝑠 ∧ 𝑞), 

and then 

      (((𝑝 ∧ 𝑞) ∼ 𝑟) ⊗ (𝑠 ∼ 𝑝)) → (𝑟 ∼ (𝑠 ∧ 𝑞)  = 𝟏 ∈ 𝐹. 

Hence, [((𝑝 ∧ 𝑞) ∼ 𝑟) ⊗ (𝑠 ∼ 𝑝)] ≤𝐹  [𝑟 ∼ (𝑠 ∧ 𝑞)] or equivalently, 

      (([𝑝] ∧𝐹 [𝑞]) ∼𝐹 [𝑟]) ⊗𝐹 ([𝑠] ∼𝐹 [𝑝]) ≤𝐹 [𝑟] ∼𝐹 ([𝑠] ∧𝐹 [𝑞]). 

Axioms (E5)-(E7) can be shown in a similar way. 
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Separateness: let [𝑝]𝐹 ∼𝐹 [𝑞]𝐹 = [𝟏]𝐹, then [𝑝 ∼ 𝑞]𝐹 = [𝟏]𝐹; that is  𝑝 ∼ 𝑞 ∈

𝐹. This means that 𝑝 ≈𝐹 𝑞 and hence [𝑝] = [𝑞]. 

It is sufficient to verify that the other axioms of ℓEQΔ
s -algebra hold also in the 

factor algebra ℰΔ/𝐹: 

Using the axioms (EsΔ1)-( EsΔ10), we get 

(EsΔ1): Δ𝐹[𝟏]𝐹 = [Δ𝟏]𝐹 = [𝟏]𝐹. 

(EsΔ2): If  Δ𝑝 ≤ 𝑝, then  Δ𝑝 → 𝑝 = 𝟏 ∈ 𝐹. Hence,  [Δ𝑝]𝐹 ≤𝐹 [𝑝]𝐹; that is 

       Δ𝐹[𝑝]𝐹 ≤𝐹 [𝑝]𝐹. 

(EsΔ3): If  Δ𝑝 ≤ ΔΔ𝑝, then  Δ𝑝 → ΔΔ𝑝 = 𝟏 ∈ 𝐹. Hence,  [Δ𝑝]𝐹 ≤𝐹 [ΔΔ𝑝]𝐹 

that is;  Δ𝐹[𝑝]𝐹 ≤𝐹 Δ𝐹Δ𝐹[𝑝]𝐹. 

(EsΔ4): If  Δ(𝑝 ∼ 𝑞) ≤ Δ𝑝 ∼ Δ𝑞, then  Δ(𝑝 ∼ 𝑞) → (Δ𝑝 ∼ Δ𝑞) = 𝟏 ∈ 𝐹. 

Hence, [Δ(𝑝 ∼ 𝑞)]𝐹 ≤𝐹 [Δ𝑝 ∼ Δ𝑞]𝐹; that is 

      Δ𝐹([𝑝]𝐹 ∼𝐹 [𝑞]𝐹) ≤𝐹 Δ𝐹[𝑝]𝐹 ∼𝐹 Δ𝐹[𝑞]𝐹. 

(EsΔ5): 

      Δ𝐹([𝑝]𝐹 ∧𝐹 [𝑞]𝐹) = [Δ(𝑝 ∧ 𝑞)]𝐹 = [Δ𝑝 ∧ Δ𝑞]𝐹 = Δ𝐹[𝑝]𝐹 ∧𝐹  Δ𝐹[𝑞]𝐹. 

(EsΔ6): If  Δ(𝑝 ∨ 𝑞) ≤ Δ𝑝 ∨ Δ𝑞, then  Δ(𝑝 ∨ 𝑞) → Δ𝑝 ∨ Δ𝑞 = 𝟏 ∈ 𝐹. 

Hence, [Δ(𝑝 ∨ 𝑞)]𝐹 ≤𝐹 [Δ𝑝 ∨ Δ𝑞]𝐹; that is 

      Δ𝐹([𝑝]𝐹 ∨𝐹 [𝑞]𝐹) ≤𝐹 Δ𝐹[𝑝]𝐹 ∨𝐹  Δ𝐹[𝑞]𝐹. 

(EsΔ7): Δ𝐹[𝑝]𝐹 ∨𝐹 ¬Δ𝐹[𝑝]𝐹 = [Δ𝑝 ∨ ¬Δ𝑝]𝐹 = [𝟏]𝐹 = 𝐹. 

(EsΔ8): If  Δ(𝑝 ∼ 𝑞) ≤ (𝑝 ⊗ 𝑟) ∼ (𝑞 ⊗ 𝑟), then  Δ(𝑝 ∼ 𝑞) → (𝑝 ⊗ 𝑟) ∼

(𝑞 ⊗ 𝑟) = 𝟏 ∈ 𝐹. Hence, [Δ(𝑝 ∼ 𝑞)]𝐹  ≤𝐹 [(𝑝 ⊗ 𝑟) ∼ (𝑞 ⊗ 𝑟)]𝐹; that is 

      Δ𝐹([𝑝]𝐹 ∼𝐹 [𝑞]𝐹) ≤𝐹 ([𝑝]𝐹 ⊗𝐹 [𝑟]𝐹) ∼𝐹 ([𝑞]𝐹 ⊗𝐹 [𝑟]𝐹). 

Similarly, (EsΔ9). 

(EsΔ10): ([𝑝]𝐹 →𝐹 [𝑞]𝐹) ∨𝐹 ([𝑞]𝐹 →𝐹 [𝑝]𝐹) = [(𝑝 → 𝑞) ∨ (𝑞 → 𝑝)]𝐹 

                                                                       = [𝟏]𝐹 



57 
 

Finally, 𝑓 is a homomorphism by definition:𝑓(𝑝 ⊡ 𝑞) = [𝑝 ⊡ 𝑞]𝐹 =

𝑓(𝑝 ⊡ 𝑞) = [𝑝 ⊡ 𝑞]𝐹 = [𝑝]𝐹 ⊡𝐹 [𝑞]𝐹 = 𝑓(𝑝) ⊡𝐹 𝑓(𝑞) 

where ⊡ ∈ {∧, ∨, ⊗, ∼} and 𝑓(Δ𝑝) = [Δ𝑝]𝐹 = Δ𝐹[𝑝]𝐹 = Δ𝐹𝑓(𝑝).              ∎ 

The collection of all filters of a ℓEQΔ
s -algebra ℰΔwill be denoted by ℱ(ℰ𝛥). 

4.3 Representable 𝓵𝐄𝐐𝚫
𝐬 -algebras 

For a nonempty subset 𝑋 of a ℓEQΔ
s -algebra ℰΔ, the smallest filter of ℰΔ which 

contains 𝑋, i.e. ⋂{𝐹 ∈ ℱ(ℰ𝛥): 𝑋 ⊆ 𝐹} is said to be a filter of  ℰΔ generated 

by 𝑋 and will be denoted by 〈𝑋〉. It is clear that if 𝑋1 ⊆ 𝑋2, then 〈𝑋1〉 ⊆ 〈𝑋2〉. 

If  𝑋 = 𝑌 ∪ {𝑝}, we will write 〈𝑌, 𝑝〉 for 〈𝑋〉. The set of non-negative integers 

will be denoted by 𝜔, we define 

𝑝 →0 𝑞 = 𝑞, 𝑝 →𝑛+1 𝑞 = 𝑝 → (𝑝 →𝑛 𝑞). 

If  𝑝 = 1, 𝑝 →𝑛+1 𝑞 is denoted by 𝑞̃𝑛+1. 

The following theorem gives a characterization of a filter generated by a set. 

Theorem 4.3. 

Let 𝑋 be a nonempty subset of a ℓEQΔ
s -algebra ℰ𝛥. Then 

      〈𝑋〉 = {𝑝 ∈ 𝐸: Δ𝑞1 → (Δ𝑞2 → ⋯ (Δ𝑞𝑛 → 𝑝) … )) = 𝟏, 

                                                                                    for some 𝑞𝑖 ∈ 𝑋, 𝑛 ∈ 𝜔}. 

Proof. 

Put 𝑀 = {𝑝 ∈ 𝐸: Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞𝑛 → 𝑝). . . )) = 𝟏, for some 𝑞𝑖 ∈

𝑋, 𝑛 ∈ 𝜔}. Now, we show that 𝑀 is a filter of  ℰΔ. Since all 𝑞𝑖 ∈ 𝑀, 𝑞𝑖 ≤ 𝟏, 

therefore by Lemma 4.1(a) and (EsΔ1) Δ𝑞𝑖 ≤ Δ𝟏 = 𝟏 so Δ𝑞𝑖 → 𝟏 = 𝟏; i.e., 

𝟏 ∈ 𝑀. Now, let 𝑝, 𝑝 → 𝑞 ∈ 𝑀, then there exist 𝑞1, 𝑞2, . . . , 𝑞𝑛, 𝑞1
′ , 𝑞2

′ , . . . , 𝑞𝑚
′ ∈

𝑋 such that 
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      Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞𝑛 → 𝑝). . . )) = 𝟏 and 

      Δ𝑞1
′ → (Δ𝑞2

′ →. . . (Δ𝑞𝑚
′ → (𝑝 → 𝑞)). . . )) = 𝟏 

Hence, by Lemma 3.1(l), we have: 

      𝑝 → 𝑞 ≤ (Δ𝑞𝑛 → 𝑝) → (Δ𝑞𝑛 → 𝑞) 

                 ≤ (Δ𝑞𝑛−1 → (Δ𝑞𝑛 → 𝑝)) → (Δ𝑞𝑛−1 → (Δ𝑞𝑛 → 𝑞)). 

By continuing this way, we get that 

      𝑝 → 𝑞 ≤ 

 ≤ (Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞𝑛 → 𝑝). . . )) → (Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞𝑛 → 𝑞). . . )). 

Then, by order properties of " → ", Lemma 4.1(a) and (EsΔ1), we conclude 

that 

      𝑝 → 𝑞 ≤ 𝟏 → (Δ𝑞1 → (Δ𝑞2 → ⋯ (Δ𝑞𝑛 → 𝑞) … )) 

                 ≤ Δ𝑞0  → (Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞𝑛 → 𝑞). . . )), 

where 𝑞0 ∈ 𝑀. Hence, 

      Δ𝑞𝑚
′ → (𝑝 → 𝑞) ≤ Δ𝑞𝑚

′ → Δ𝑞0 → ((Δ𝑞1 → (Δ𝑞2 → . . . (Δ𝑞𝑛 → 𝑞). . . ))). 

We can obtain by continuing 

      Δ𝑞1
′ → (Δ𝑞2

′ →. . . (Δ𝑞𝑚
′ → (𝑝 → 𝑞)). . . ) ≤ Δ𝑞1

′ → (Δ𝑞2
′ → . . . (Δ𝑞𝑚

′ →

(Δ𝑞0 → (Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞𝑛 → 𝑞). . . ))). . . ). 

Then, 

Δ𝑞1
′ → (Δ𝑞2

′ →. . . (Δ𝑞𝑚
′ → (Δ𝑞0 → (Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞𝑛 → 𝑞). . . ))). . . )

= 𝟏. 

And so 𝑞 ∈ 𝑀. Finally, we will prove that Δ𝑝 ∈ 𝑀 whenever 𝑝 ∈ 𝑀. Assume 

that 𝑝 ∈ 𝑀, then 
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      (Δ𝑞1 → (Δ𝑞2 → . . . (Δ𝑞 → 𝑝). . . )) = 𝟏 for some 𝑞1, 𝑞2, . . . , 𝑞𝑛 ∈ 𝑋. 

By (EsΔ1), Lemma 4.1(b), Lemma 4.1(d), and the order properties of  "→", 

      𝟏 = Δ𝟏 = Δ(Δ𝑞1 → (Δ𝑞2 → ⋯ (Δ𝑞𝑛 → 𝑝) … )) 

                   ≤ (ΔΔ𝑞1 → (ΔΔ𝑞2 → ⋯ (ΔΔ𝑞𝑛 → Δ𝑝) … )) 

                   = (Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞 → Δ𝑝). . . )). 

Hence, Δ𝑝 ∈ 𝑀. Therefore, 𝑀 is a filter of ℰΔ. Let 𝐹 ∈ ℱ(ℰΔ), 𝑋 ⊆ 𝐹 and 𝑝 ∈

𝑀, then 

      (Δ𝑞1 → (Δ𝑞2 →. . . (Δ𝑞𝑛 → 𝑝). . . )) = 𝟏, for some 𝑞𝑖 ∈ 𝑋 and 𝑛 ∈ 𝜔. 

Since 𝟏, Δ𝑞1, Δ𝑞2, . . . , Δ𝑞𝑛 ∈ 𝐹, we imply 𝑝 ∈ 𝐹. Thus, 𝑀 ⊆ 𝐹. Therefore, 𝑀 

is the smallest filter of ℰΔ containing 𝑋. i.e. 𝑀 = 〈𝑋〉.                                   ∎ 

Theorem 4.4. 

Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. Then 

〈𝐹, 𝑝〉 = {𝑞 ∈ 𝐸: Δ𝑝 → 𝑞 ∈ 𝐹} 

Proof. 

Let 𝑞 ∈ 〈𝐹, 𝑝〉, then by Theorem 4.3 and Lemma 3.1(o) for some 

𝑓1, 𝑓2, . . . , 𝑓𝑛 ∈ 𝐹, 𝑛, 𝑘1, 𝑘2 ∈ 𝜔 

      Δ𝑓1 → (Δ𝑓2 → . . . (Δ𝑓𝑛 → (Δ𝑝 →𝑘1 𝑞̃𝑘2). . . ) = 𝟏. 

Since  𝐹 is a filter and 𝟏 ∈ 𝐹, then  Δ𝑝 →𝑘1 𝑞̃𝑘2 ∈ 𝐹. Hence, by Lemma 3.1 

(p) and Lemma 4.1(i) we get, 

      Δ𝑝 →𝑘1 𝑞̃𝑘2 ≤ (Δ𝑝 ⊗ … ⊗ Δ𝑝) → 𝑞̃𝑘3 = Δ𝑝 → 𝑞̃𝑘3 ∈ 𝐹 

for some 𝑘3 ∈ 𝜔. Since  𝐹 is a filter, then by Lemma 4.1(b), Lemma 4.1(d) 

and Lemma 4.1(g) and Lemma 4.2(a), we obtain 
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      Δ(Δ𝑝 → 𝑞̃𝑘3) ≤ ΔΔ𝑝 → Δ𝑞̃𝑘3 = Δ𝑝 → Δ𝑞 ≤ Δ𝑝 → 𝑞 ∈ 𝐹 

Thus, 𝑞 ∈ {𝑞 ∈ 𝐸: Δ𝑓 → (Δ𝑝 → 𝑞) = 𝟏 for some 𝑓 ∈ 𝐹}. 

Conversely, since  〈𝐹, 𝑝〉 is a filter and  𝑝 ∈ 〈𝐹, 𝑝〉, then  Δ𝑝 ∈ 〈𝐹, 𝑝〉. If  Δ𝑝 →

𝑞 ∈ 𝐹, then  Δ𝑝 → 𝑞 ∈ 〈𝐹, 𝑝〉, and hence, 𝑞 ∈ 〈𝐹, 𝑝〉.                                                  ∎ 

By the following theorem, we determine filters generated by join of two 

elements. 

Theorem 4.5. 

Let 𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ, and 𝑝, 𝑞 ∈ 𝐸. Then 

𝑝 ∨ 𝑞 ∈ 𝐹 implies 〈𝐹, 𝑝〉 ∩ 〈𝐹, 𝑞〉 = 𝐹; 

Proof. 

It is clear that 𝐹 ⊆ 〈𝐹, 𝑝〉 ∩ 〈𝐹, 𝑞〉. Let 𝑝 ∨ 𝑞 ∈ 𝐹, then by Definition 4.2 and 

Lemma 4.1(c), Δ(𝑝 ∨ 𝑞) = Δ𝑝 ∨ Δ𝑞 ∈ 𝐹. Now let  𝑟 ∈ 〈𝐹, 𝑝〉 ∩ 〈𝐹, 𝑞〉, then by 

Theorem 4.4, we get  Δ𝑝 → 𝑟 ∈ 𝐹 and  Δ𝑞 → 𝑟 ∈ 𝐹 for some 𝑓 ∈ 𝐹. Hence, 

by Lemma 4.3(b), we have  (Δ𝑝 → 𝑟) ⊗ (Δ𝑞 → 𝑟) ∈ 𝐹. By this, Proposition 

3.3(b) and Lemma 4.2(a), we have 

      (Δ𝑝 → 𝑟) ⊗ (Δ𝑞 → 𝑟) ≤ (Δ𝑝 ∨ Δ𝑞) → 𝑟 ∈ 𝐹. 

Therefore, 𝑟 ∈ 𝐹. Thus, 〈𝐹, 𝑝〉 ∩ 〈𝐹, 𝑞〉 ⊆ 𝐹.                                                                 ∎ 

We extend to ℓEQΔ
s -algebra the following result, proved by El-Zekey in [7]. 

The proof is completely the same as El-Zekey's proof. 

Proposition 4.1. 

Let  𝐹 be a filter of a ℓEQΔ
s -algebra ℰΔ. Then the following properties are 

equivalent: 
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(a) 𝐹 is prime. 

(b) 𝐸/𝐹 is a chain, i.e., is linearly (totally) ordered by  ≤𝐹. 

Proof. ([7]) 

(a) ⇔ (b): If 𝐹 is prime, then from (4.2) we get 

(𝑝 → 𝑞) ∈ 𝐹 or (𝑞 → 𝑝) ∈ 𝐹 iff  [𝑝]𝐹 ≤𝐹 [𝑞]𝐹 or [𝑞]𝐹 ≤𝐹 [𝑝]𝐹; 

that is 𝐸/𝐹  is a chain.                                                                                        ∎ 

Theorem 4.6. 

Let ℰΔ be a ℓEQΔ
s -algebra and let  𝑝 ∈ 𝐸, 𝑝 ≠ 𝟏. Then, there is a prime filter  𝐹 

on  ℰΔ not containing  𝑝. 

Proof. 

There are filters not containing 𝑝, e.g. 𝐹0 = {𝟏}. We shall show that if 𝐹 is any 

filter not containing 𝑝 and 𝑥, 𝑦 ∈ 𝐸 such that (𝑥 → 𝑦) ∉ 𝐹 and (𝑦 → 𝑥) ∉ 𝐹, 

then there is a filter 𝐹′ ⊇ 𝐹 not containing 𝑝 but containing either (𝑥 → 𝑦) ∈

𝐹 or (𝑦 → 𝑥) ∈ 𝐹. Note that the least filter 𝐹′ containing 𝐹 as a subset and 𝑢 ∈

𝐸 as an element is 𝐹′ = {𝑣 ∈ 𝐸: Δ𝑢 → 𝑣 ∈ 𝐹}. Indeed, 𝐹′ is obviously a filter 

by Theorem 4.4 equivalently 𝐹′ = 〈𝐹, 𝑢〉. 

Thus, assume (𝑥 → 𝑦) ∉ 𝐹, (𝑦 → 𝑥) ∉ 𝐹 and let 𝐹1, 𝐹2 be the smallest filters 

containing 𝐹 as a subset and (𝑥 → 𝑦), (𝑦 → 𝑥) respectively as an element. We 

claim that 𝑝 ∉ 𝐹1 or 𝑝 ∉ 𝐹2. Assume the contrary; then, 

      Δ(𝑥 → 𝑦) → 𝑝 ∈ 𝐹 and  Δ(𝑦 → 𝑥) → 𝑝 ∈ 𝐹. 

Hence, by Lemma 4.3(b), we have 

      (Δ(𝑥 → 𝑦) → 𝑝) ⊗ (Δ(𝑦 → 𝑥) → 𝑝) ∈ 𝐹. 

By this, Proposition 3.3(b) and Lemma 4.2(a), we have 
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      (Δ(𝑥 → 𝑦) → 𝑝) ⊗ (Δ(𝑦 → 𝑥) → 𝑝) ≤ (Δ(𝑥 → 𝑦) ∨ Δ(𝑦 → 𝑥)) → 𝑝 

                                                                  = 𝟏 → 𝑝 ∈ 𝐹. 

Thus, 𝑝 ∈ 𝐹 (since 𝟏 ∈ 𝐹) a contradiction. Hence 𝑝 ∉ 𝐹1 or 𝑝 ∉ 𝐹2. 

Now, if  ℰΔ is countable (which will be our case in the proof of completeness), 

then we may arrange all pairs  (𝑥, 𝑦) from  𝐸2 into a sequence 

{(𝑥𝑛, 𝑦𝑛)|𝑛 natural}, put 𝐹0 = {𝟏} and having constructed 𝐹𝑛 such that 𝑝 ∉ 𝐹𝑛 

we take  𝐹𝑛+1 ⊇ 𝐹𝑛 such that  𝑝 ∉ 𝐹 according to our construction; if possible 

we take 𝐹𝑛+1 such that  (𝑥𝑛 → 𝑦𝑛) ∈ 𝐹𝑛+1, if not, we take that with  (𝑦𝑛 →

𝑥𝑛) ∈ 𝐹𝑛+1. Our desired prime filter is the union 

⋃ 𝐹𝑛

𝑛

 

If  ℰΔ is uncountable, then one has to use the axiom of choice and work 

similarly with a transfinite sequence of filters.                                                                ∎ 

Theorem 4.7. (Representation theorem) 

Let  ℰΔ be prelinear ℓEQΔ
s -algebra. Then, each ℰΔ is subdirectly embeddable 

into a product of linearly ordered ℓEQΔ
s -algebras; i.e., ℰΔ is representable. 

Proof. 

Let 𝓟 be the set of all prime filters of  ℰΔ. For 𝐹 ∈ 𝓟. Thus, by Theorem 4.2, 

the natural homomorphism  ℎ: ℰΔ → ∏  ℰΔ/≈𝐹𝐹∈𝓟  defined by  ℎ(𝑝) =

〈[𝑝]𝐹〉𝐹∈𝓟 is a subdirect embedding of  ℰΔ into a direct product of  {ℰΔ/

≈𝐹 : 𝐹 ∈ 𝓟}. It remains to show that it is one-one. If 𝑝, 𝑞 ∈ 𝐹 and 𝑝 ≠ 𝑞 

then 𝑝 ≰ 𝑞 or 𝑞 ≰ 𝑝. Without loss of generality, then (𝑝 → 𝑞) ≠ 𝟏 in 𝐸. By 

Theorem 4.6, let  𝐹 be a prime filter on  𝐸 not containing  (𝑝 → 𝑞); then 

in ℰΔ/𝐹, [𝑝]𝐹 ≰ [𝑞]𝐹, hence [𝑝]𝐹 ≠ [𝑞]𝐹 and therefore ℎ(𝑝) ≠ ℎ(𝑞). Using 
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Proposition 4.1 and Theorem 4.2, ℰΔ/≈𝐹 is linearly ordered ℓEQΔ
s -algebra for 

each 𝐹 ∈ 𝓟, which completes the proofs.                                                                          ∎  
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𝓵𝐄𝐐𝚫
𝐬 -Logic 

In this chapter, we develop many-valued (fuzzy) logic in which the basic 

connective is fuzzy equality and the implication is derived from the latter. 

Precisely, we formulate the ℓEQ𝚫
s -logic which is rich enough to enjoy the 

completeness property and its set of truth values is formed by ℓEQΔ
s -algebras 

in which the fuzzy equality is one of the basic operations. The implication 

operation (as well as the corresponding connective) is derived. We in detail 

introduce syntax and semantics of the ℓEQ𝚫
s -logic and prove various theorems 

characterizing its properties including completeness. Formal proofs in this 

chapter proceed mostly in an equational style. 

5.1 𝓵𝐄𝐐𝚫
𝐬 -logic: syntax 

Definition 5.1. 

The language of ℓEQ𝚫
s -logic is the language of the basic logic expanded by the 

binary connective ∨, the unary connective 𝚫 and a false (logical) constant ⊥. 

Implication is a derived connective defined by (3.26). Further definable 

connective is (3.29). The truth constant ⊤ is defined by: 

 ⊤ =: ⊥≡⊥ (5.1) 

Let  𝒯 be a language of ℓEQ𝚫
s -logic and the algebra of truth values is formed 

by ℓEQΔ
s -algebra  ℰΔ = (𝐸, ∧, ∨, ⊗, ∼, Δ, 𝟎, 𝟏). 

The set of all formulas for the given language 𝒯 is denoted by 𝐹𝒯. 

5.1.1 Logical Axioms and Inference Rules 

The logical axioms of the ℓEQ𝚫
s -logic consist of the logical axioms (A2), 

(A3),…, (A11) of the basic EQ-logic plus the following ones: 
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(As1)   𝑃 ∨ 𝑃 ≡ 𝑃 

(As2)   (𝑃 ∨ 𝑄) ∨ 𝑅 ≡ 𝑃 ∨ (𝑄 ∨ 𝑅) 

(As3)   𝑃 ⧠ (𝑃 ⧈ 𝑄) ≡ 𝑃                                where  {⧠, ⧈} = {∧,  ∨}, ⧠ ≠ ⧈ 

(As4)   (((𝑃 ∨ 𝑄) ≡ 𝑅)&(𝑆 ≡ 𝑃) ⇒ (𝑅 ≡ (𝑄 ∨ 𝑆))) 

(As5)   𝑃 ⇒ (⊤ ≡ 𝑃) 

(As6)   𝑃 ∧ ⊥ ≡ ⊥ 

(As7)   𝚫⊤ 

(As8)   𝚫𝑃 ≡ 𝚫𝑃 ∧ 𝑃 

(As9)   𝚫𝚫𝑃 ≡ 𝚫𝑃 

(As10) 𝚫(𝑃 ⇒ 𝑄) ⇒ (𝚫𝑃 ⇒ 𝚫𝑄) 

(As11) 𝚫(𝑃 ⇒ 𝑄) ∨ 𝚫(𝑄 ⇒ 𝑃) 

(As12) 𝚫(𝑃 ≡ 𝑄) ⇒ ((𝑅&𝑃)&𝑆) ≡ (𝑅&(𝑄&𝑆)) 

(As13) 𝚫𝑃 ∨ ¬ 𝚫𝑃 

Remark 5.1. 

Our aim is developing a more general fuzzy EQ-logic whose semantics based 

on separateness (need not to be good) called ℓEQ𝚫
s -algebras. Consequently, 

we formulate the axiom (As5) as a relaxation from axiom (A1) (goodness 

axiom) of basic EQ-logic. 

Inference rules of ℓEQ𝚫
s -logic are Leibniz rule (Leib) and the Modus Ponens 

rule (MP): 

𝑃, 𝑃 ⇒ 𝑄

𝑄
        (MP) 

5.1.2 Fundamental Properties of 𝓵𝐄𝐐𝚫
𝐬 -logic 

The following lemmas illustrate the main properties of the ℓEQ𝚫
s -logic. 
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Lemma 5.1. 

(a) 𝑃, 𝑃 ≡ 𝑄 ⊢ 𝑄                                                                (Equinimity (EA)) 

(b) 𝑃 ⊢ ⊤ ≡ 𝑃;                                                                                 (Rule (T)) 

(c) 𝑃 ⊢ 𝚫𝑃;                                                                  (Necessitation rule (N) 

(d) ⊤ ≡ 𝑃 ⊢ 𝑃. 

Proof. 

(a) 

      𝑃 ≡ 𝑄                   (Assumption) 

      ⇔ 〈(Leib); "C − part": (𝑃 ∧ 𝐩)〉 

      𝑃 ∧ 𝑃 ≡ 𝑃 ∧ 𝑄 

      ⇔ 〈(Leib) + (𝑃 ∧ 𝑃 ≡ 𝑃); "C − part": (𝐩 ≡ 𝑃 ∧ 𝑄)〉 

      𝑃 ≡ 𝑃 ∧ 𝑄 

That is  ⊢ 𝑃 ⇒ 𝑄. Hence, by (MP) with the assumption  𝑃, we get  ⊢ 𝑄. 

(b) Direct from the assumption and (As5) by (MP). 

(c) 

      ⊤ ≡ 𝑃                   (Assumption + Item (b)) 

      ⇔ 〈(Leib); "C − part": (𝚫𝐩)〉 

      𝚫⊤ ≡ 𝚫𝑃 

Thus, by (EA) with (As7), we get the result. 

(d) 

      ⊤ ≡ 𝑃                   (Assumption) 

      ⇔ 〈(Leib); "C − part": (𝚫𝐩)〉 

      𝚫⊤ ≡ 𝚫𝑃 
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Thus, by (EA) with (As7), we get  ⊢ 𝚫𝑃. Hence, by (MP) with (As8) the result 

holds.                                                                                                                 ∎ 

Remark 5.2. 

The following properties of the basic EQ-logic were proved by the inference 

rules of ℓEQ𝚫
s -logic, Equanimity and the logical axioms (A2), (A3),…, (A11) 

without using goodness axiom (A1) (see [6]). So, they remain valid in the 

ℓEQ𝚫
s -logic. We derive further properties in the ℓEQ𝚫

s -logic that we will use 

for establishing its completeness for the semantical domain of ℓEQ𝚫
s -algebras. 

Lemma 5.2. ([6]) 

(a) 𝑃 ≡ 𝑄 ⊢ 𝑄 ≡ 𝑃; 

(b) ⊢ 𝑃 ≡ 𝑃; 

(c) 𝑃, 𝑄 ⊢ 𝑃 ⧠ 𝑄;                                                          where ⧠ ∈ {&,  ∧, ≡} 

(d) ⊢ (𝑃 ≡ 𝑄) ≡ (𝑄 ≡ 𝑃); 

(e) ⊢ (𝑃 ⇒ 𝑄) ⇒ ((𝑃 ∧ 𝑅) ⇒ 𝑄); 

(f) ⊢ (𝑃 ≡ 𝑄) ⇒ ((𝑃 ≡ 𝑅) ≡ (𝑄 ≡ 𝑅)); 

(g) ⊢ (𝑃 ≡ 𝑄) ⇒ (𝑃 ⇒ 𝑄); 

(h) 𝑃 ⇒ 𝑄, 𝑄 ⇒ 𝑅 ⊢ 𝑃 ⇒ 𝑅; 

(i) 𝑃 ⇒ 𝑄, 𝑅 ⇒ 𝑆 ⊢ (𝑃&𝑅) ⇒ (𝑄&𝑆); 

(j) ⊢ (𝑃 ≡ 𝑄)&(𝑄 ≡ 𝑅) ⇒ (𝑃 ≡ 𝑅); 

(k) ⊢ (𝑃&𝑄) ⇒ 𝑃  and  ⊢ (𝑃&𝑄) ⇒ 𝑄; 

(l)  (𝑃 ⇒ 𝑄), (𝑃 ⇒ 𝑅) ⊢ (𝑃 ⇒ (𝑄 ∧ 𝑅)); 

(m)  ⊢ (𝑃 ≡ 𝑄) ⇒ ((𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃)); 

(n)  ⊢ (𝑃 ∧ 𝑄) ⇒ 𝑃; 

(o) ⊢ (𝑃 ≡ 𝑄)&(𝑅 ≡ 𝑆) ⇒ ((𝑃 ≡ 𝑅) ≡ (𝑄 ≡ 𝑆)). 
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Lemma 5.3. 

(a) ⊢ 𝑃 ∨ 𝑄 ≡ 𝑄 ∨ 𝑃; 

(b) ⊢ 𝑃 ⇒ (𝑃 ∨ 𝑄)  and  ⊢ 𝑄 ⇒ (𝑃 ∨ 𝑄); 

(c) ⊢ (𝑃 ⇒ 𝑄)&(𝑄 ⇒ 𝑃) ⇒ (𝑃 ≡ 𝑄); 

(d) ⊢ (𝑃 ⇒ 𝑄) ≡ ((𝑃 ∨ 𝑄) ⇒ 𝑄); 

(e) 𝑃 ⇒ 𝑄 ⊢ (𝑅 ⇒ 𝑃) ⇒ (𝑅 ⇒ 𝑄); 

(f) 𝑃 ⇒ 𝑄 ⊢ (𝑄 ⇒ 𝑅) ⇒ (𝑃 ⇒ 𝑅); 

(g) ⊢ (𝑃 ⇒ 𝑄) ⇒ ((𝑃 ∨ 𝑅) ⇒ (𝑄 ∨ 𝑅)); 

(h) (𝑃 ⇒ 𝑄), (𝑅 ⇒ 𝑆) ⊢ ((𝑃 ∨ 𝑅) ⇒ (𝑄 ∨ 𝑆)); 

(i)  𝚫(𝑃 ⇒ 𝑄) ⇒ 𝑅, 𝚫(𝑄 ⇒ 𝑃) ⇒ 𝑅 ⊢ 𝑅;                                 (Conclusion) 

(j)  ⊢ (𝑃 ⇒ 𝑄) ∨ ( 𝑄 ⇒ 𝑃); 

(k)  (𝑃 ⇒ 𝑄) ⇒ 𝑅, (𝑄 ⇒ 𝑃) ⇒ 𝑅 ⊢ 𝑅;                                       (Conclusion) 

(l) ├ (𝑃 ⇒ 𝑄) ≡ (𝑃 ⇒ (𝑃 ∧ 𝑄)); 

(m) ├ 𝑄 ⇒ (𝑃 ⇒ 𝑄); 

(n)  ⊢ 𝑃 ∨ ⊥ ≡  𝑃; 

(o)  ⊢ (𝑃 ≡ 𝑄) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅)); 

(p)  ⊢ (𝑃 ≡ 𝑄)&(𝑅 ≡ 𝑆) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑆)) 

(q)  ⊢ 𝑃 ≡ 𝑄 ⇒ (𝑃 ∨ 𝑅) ≡ (𝑄 ∨ 𝑅). 

Proof. 

(a) From double using of Lemma 5.2(b) and Lemma 5.2(c), we have 

     ⊢ (𝑃 ∨ 𝑄 ≡ 𝑃 ∨ 𝑄)&(𝑃 ≡ 𝑃). 

Hence, by (MP) with (As4) in the form 

     ⊢ (𝑃 ∨ 𝑄 ≡ 𝑃 ∨ 𝑄)&(𝑃 ≡ 𝑃) ⇒ (𝑃 ∨ 𝑄 ≡ 𝑄 ∨ 𝑃), 

we get  ⊢ (𝑃 ∨ 𝑄 ≡ 𝑄 ∨ 𝑃). 
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(b)  Using (3.26) with (As3) and Lemma 5.2(a), we get  ⊢ 𝑃 ⇒ (𝑃 ∨ 𝑄). 

Hence, by the Leibniz rule (Leib) with item (a) we have the second part. 

(c) 

      (𝑃 ≡ (𝑃 ∧ 𝑄))&((𝑃 ∧ 𝑄) ≡ 𝑄) ⇒ (𝑃 ≡ 𝑄)                (Lemma 5.2(j)) 

     ⇔ 〈(Leib) + Lemma 5.2(d); "C − part": (𝑃 ≡ (𝑃 ∧ 𝑄))&𝐩 ⇒ (𝑃 ≡ 𝑄)〉 

      (𝑃 ≡ (𝑃 ∧ 𝑄))&(𝑄 ≡ (𝑃 ∧ 𝑄)) ⇒ (𝑃 ≡ 𝑄) 

      ⇔ 〈(Leib) + (A2); "C − part": (𝑃 ≡ (𝑃 ∧ 𝑄))&(𝑄 ≡ 𝐩) ⇒ (𝑃 ≡ 𝑄)〉 

      (𝑃 ≡ (𝑃 ∧ 𝑄))&(𝑄 ≡ (𝑄 ∧ 𝑃)) ⇒ (𝑃 ≡ 𝑄) 

(d) 

      (𝑃 ∨ 𝑄) ≡ ((𝑃 ∨ 𝑄) ∧ 𝑄)  

      ⇔ 〈(Leib) + (A2) + Item (a); "C − part": (𝑃 ∨ 𝑄) ≡ 𝐩〉 

      (𝑃 ∨ 𝑄) ≡ (𝑄 ∧ (𝑄 ∨ 𝑃)) 

      ⇔ 〈(Leib) + (As3); "C − part": (𝑃 ∨ 𝑄) ≡ 𝐩〉 

      (𝑃 ∨ 𝑄) ≡ 𝑄 

      ⇔ 〈(Leib); "C − part": 𝐩 ∧ 𝑃〉 

      (𝑃 ∨ 𝑄) ∧ 𝑃 ≡ 𝑄 ∧ 𝑃 

      ⇔ 〈(Leib)twice + (A2)〉 

       𝑃 ∧ (𝑃 ∨ 𝑄) ≡ 𝑃 ∧ 𝑄 

      ⇔ 〈(Leib) + (As3); "C − part": 𝐩 ≡ 𝑃 ∧ 𝑄〉 

       𝑃 ≡ 𝑃 ∧ 𝑄 

(e) 

      (𝑅 ⇒ (𝑄 ∧ 𝑃)) ⇒ (𝑅 ⇒ 𝑄)                                (A11) 

      ⇔ 〈(Leib) + (A2); "C − part": (𝑅 ⇒ 𝐩) ⇒ (𝑅 ⇒ 𝑄)〉 

      (𝑅 ⇒ (𝑃 ∧ 𝑄)) ⇒ (𝑅 ⇒ 𝑄) 

      ⇔ 〈(Leib) + (𝑃 ≡ 𝑃 ∧ 𝑄) + Lemma 5.2(a); "C − part": 
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            (𝑅 ⇒ 𝐩) ⇒ (𝑅 ⇒ 𝑄)〉 

      (𝑅 ⇒ 𝑃) ⇒ (𝑅 ⇒ 𝑄) 

(f)  In the same way as above using Lemma 5.2(e). 

(g)  From item (b) and item (e), we get 

      ⊢ (𝑃 ⇒ 𝑄) ⇒ (𝑃 ⇒ (𝑄 ∨ 𝑅)). 

By this, and item (d) using the Leibniz rule, we obtain 

      ⊢ (𝑃 ⇒ 𝑄) ⇒ ((𝑃 ∨ (𝑄 ∨ 𝑅)) ⇒ (𝑄 ∨ 𝑅)). 

From this, and commutativity and associativity of  " ∨ " using (Leib), we get 

      ⊢ (𝑃 ⇒ 𝑄) ⇒ (((𝑃 ∨ 𝑅) ∨ 𝑄) ⇒ (𝑄 ∨ 𝑅)). 

We can get from item (b) and item (f) 

      ⊢ (((𝑃 ∨ 𝑅) ∨ 𝑄) ⇒ (𝑄 ∨ 𝑅)) ⇒ ((𝑃 ∨ 𝑅)) ⇒ (𝑄 ∨ 𝑅)). 

Hence, by Lemma 5.2(h), we get the result. 

(h)  From the assumptions and item (g) by (MP), we have 

      ⊢ (𝑃 ∨ 𝑅) ⇒ (𝑄 ∨ 𝑅) and (𝑄 ∨ 𝑅) ⇒ (𝑄 ∨ 𝑆).  

Lemma 5.2(h) yields the result. 

(i)  From the assumptions by item (h), we obtain 

      ⊢ 𝚫(𝑃 ⇒ 𝑄) ∨ 𝚫(𝑄 ⇒ 𝑃) ⇒ (𝑅 ∨ 𝑅). 

From this, and (As11) by (MP), we obtain ⊢ (𝑅 ∨ 𝑅). Hence, by (EA) with 

(As1) we get  ⊢ 𝑅. 

(j) Assuming  𝚫(𝑃 ⇒ 𝑄) ⇒ (𝑃 ⇒ 𝑄) and  𝚫(𝑄 ⇒ 𝑃) ⇒ (𝑄 ⇒ 𝑃). Then, by 

item (h) we get 
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     ⊢ (𝚫(𝑃 ⇒ 𝑄) ∨ 𝚫(𝑄 ⇒ 𝑃)) ⇒ ((𝑃 ⇒ 𝑄) ∨ ( 𝑄 ⇒ 𝑃)). 

Then, by (MP) with (As11), we obtain the result. 

(k) It follows by exactly the similar proof as item (i). 

(l) 

      𝑃 ≡ 𝑃 ∧ 𝑄 

      ⇔ 〈(Leib) + Lemma 5.2(n); "C − part": 𝑃 ≡ 𝐩〉 

      𝑃 ≡ (𝑃 ∧ 𝑄) ∧ 𝑃 

      ⇔ 〈(Leib) + (A1); "C − part": 𝑃 ≡ 𝐩〉 

      𝑃 ≡ 𝑃 ∧ (𝑃 ∧ 𝑄)         (i.e. 𝑃 ⇒ (𝑃 ∧ 𝑄)) 

(m) 

      (⊤ ≡ ⊤ ∧ 𝑄) ⇒ ((⊤ ∧ 𝑃) ⇒ 𝑄)                      (Lemma 5.2(e)) 

      ⇔ 〈(Leib)twice + (A2)〉 

      (⊤ ≡ 𝑄 ∧ ⊤) ⇒ ((𝑃 ∧ ⊤) ⇒ 𝑄) 

      ⇔ 〈(Leib)twice + (A6)〉 

      (⊤ ≡ 𝑄) ⇒ (𝑃 ⇒ 𝑄) 

Which together with (As5)  ⊢  𝑄 ⇒ (⊤ ≡ 𝑄) yields by Lemma 5.2(h) the 

formula  ⊢ 𝑄 ⇒ (𝑃 ⇒ 𝑄). 

(n) 

      𝑃 ∨ ⊥ 

      ⇔ 〈(Leib) + (As6) + Lemma 5.2(a); "C − part": 𝑃 ∨ 𝐩〉 

      𝑃 ∨ (𝑃 ∧ ⊥) 

      ⇔ 〈(As3〉 

      𝑃    

(o) 

      ((𝑃 ∧ 𝑅) ≡ (𝑃 ∧ 𝑅))&(𝑄 ≡ 𝑃) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅))        (A9) 
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      ⇔ 〈(Leib) + Lemma 5.2((a) + (b)) + Rule (T); "C − part": 

             𝐩&(𝑄 ≡ 𝑃) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅))〉 

      ⊤&(𝑄 ≡ 𝑃) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅)) 

      ⇔ 〈(Leib) + (A5); "C − part": 𝐩 ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅))〉 

      (𝑄 ≡ 𝑃) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅)) 

      ⇔ 〈(Leib) + Lemma 5.2(d); "C − part": 𝐩 ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅))〉 

      (𝑃 ≡ 𝑄) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅)) 

(p)  From item (o), and Lemma 5.2(i) we get 

      ⊢ ((𝑃 ≡ 𝑄)&(𝑅 ≡ 𝑆)) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅)&(𝑅 ∧ 𝑄) ≡ (𝑆 ∧ 𝑄)). 

From this, and (A2) by using the Leibniz rule twice, we have 

      ⊢ ((𝑃 ≡ 𝑄)&(𝑅 ≡ 𝑆)) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑅)&(𝑄 ∧ 𝑅) ≡ (𝑄 ∧ 𝑆)). 

Hence, by Lemma 5.2(j) and Lemma 5.2(h), we obtain 

      ⊢ ((𝑃 ≡ 𝑄)&(𝑅 ≡ 𝑆)) ⇒ ((𝑃 ∧ 𝑅) ≡ (𝑄 ∧ 𝑆). 

(q) 

     ((𝑄 ∨ 𝑅) ≡ (𝑄 ∨ 𝑅))&(𝑃 ≡ 𝑄) ⇒ ((𝑄 ∨ 𝑅) ≡ (𝑅 ∨ 𝑃))            (As4) 

     ⇔ 〈(Leib) + Lemma 5.2((a) + (b)) + Rule (T); "C − part": 

           𝐩&(𝑃 ≡ 𝑄) ⇒ ((𝑄 ∨ 𝑅) ≡ (𝑅 ∨ 𝑃))〉 

     ⊤&(𝑃 ≡ 𝑄) ⇒ ((𝑄 ∨ 𝑅) ≡ (𝑅 ∨ 𝑃)) 

     ⇔ 〈(Leib) + (As5); "C − part": 𝐩 ⇒ ((𝑄 ∨ 𝑅) ≡ (𝑅 ∨ 𝑃))〉 

     (𝑃 ≡ 𝑄) ⇒ ((𝑄 ∨ 𝑅) ≡ (𝑅 ∨ 𝑃)) 

     ⇔ 〈(Leib) + Lemma 5.2(d); "C − part": (𝑃 ≡ 𝑄) ⇒ 𝐩〉 

     (𝑃 ≡ 𝑄) ⇒ ((𝑅 ∨ 𝑃) ≡ (𝑄 ∨ 𝑅)) 

     ⇔ 〈(Leib) + item (a); "C − part": (𝑃 ≡ 𝑄) ⇒ (𝐩 ≡ (𝑄 ∨ 𝑅))〉 

     (𝑃 ≡ 𝑄) ⇒ ((𝑃 ∨ 𝑅) ≡ (𝑄 ∨ 𝑅))                                                              ∎ 
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Remark 6.3. 

Items (c), (e) and (f) in Lemma 5.3 have been proved in the basic EQ-logic 

and we prove them again without need to goodness axiom (A1). 

Lemma 5.4. 

(a) ⊢ (𝑃 ≡ 𝑄) ≡ ((𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃)); 

(b) ⊢ (𝑃&𝑄) ⇒ (𝑃 ≡ 𝑄); 

(c) ⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ (𝚫𝑃 ≡ 𝚫𝑄); 

(d) ⊢ (𝑃 ⇒ 𝑆) ⇒ ((𝑆 ⇒ 𝑄) ⇒ (𝑃 ⇒ 𝑄)); 

(e) ⊢ ((𝑃 ∨ 𝑄) ⇒ 𝑅) ≡ ((𝑃 ⇒ 𝑅) ∧ (𝑄 ⇒ 𝑅)); 

(f)  (𝑃 ⇒ 𝑅), (𝑄 ⇒ 𝑅) ⊢ ((𝑃 ∨ 𝑄) ⇒ 𝑅); 

(g) ⊢ ((𝑃 ∧ 𝑄) ⇒ 𝑅) ≡ ((𝑃 ⇒ 𝑅) ∨ (𝑄 ⇒ 𝑅)); 

(h) ⊢ 𝚫(𝑃 ∧ 𝑄) ≡ (𝚫𝑃 ∧ 𝚫𝑄); 

(i) ⊢ 𝚫(𝑃 ∨ 𝑄) ≡ (𝚫𝑃 ∨ 𝚫𝑄); 

(j) ⊢ (𝑃&𝚫(𝑃 ⇒ 𝑄)) ⇒ 𝑄  and  ⊢ (𝚫(𝑃 ⇒ 𝑄)&𝑃 ) ⇒ 𝑄; 

(k) ⊢ (𝑃&𝚫(𝑃 ≡ 𝑄)) ⇒ 𝑄  and  ⊢ (𝚫(𝑃 ≡ 𝑄)&𝑃 ) ⇒ 𝑄; 

(l) ⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ ((𝑃&𝑅) ≡ (𝑄&𝑅)) and 

⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ ((𝑅&𝑃) ≡ (𝑅&𝑄)). 

(m) ⊢ 𝚫(𝑃 ⇒ 𝑄) ⇒ ((𝑃&𝑅) ⇒ (𝑄&𝑅)) and 

⊢ 𝚫(𝑃 ⇒ 𝑄) ⇒ ((𝑅&𝑃) ⇒ (𝑅&𝑄)); 

(n) ⊢ 𝜟𝑄 ⇒ (𝑅 ⇒ (𝑄&𝑅))  and  ⊢ 𝜟𝑄 ⇒ (𝑅 ⇒ (𝑅&𝑄)). 

Proof. 

(a) From Lemma 5.2(g), (f) and (h), it is easy to see that 

     ⊢ (𝑃 ⇒ 𝑄) ⇒ ((𝑄 ⇒ 𝑃) ⇒ (𝑃 ≡ 𝑄)). 

By this, Lemma 5.2(n) and Lemma 5.3(f) using Lemma 5.2(h), we get 

     ⊢ (𝑃 ⇒ 𝑄) ⇒ ((𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃) ⇒ (𝑃 ≡ 𝑄)). 
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Similarly, ⊢ (𝑄 ⇒ 𝑃) ⇒ ((𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃) ⇒ (𝑃 ≡ 𝑄)). Then, by 

Conclusion Lemma 5.3(k), we obtain 

     ⊢ ((𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃) ⇒ (𝑃 ≡ 𝑄)). 

Hence, by this, Lemma 5.2(m), Lemma 5.2(c) and Lemma 5.3(c) by (MP) the 

result holds. 

(b) Using Lemma 5.2(h) with Lemma 5.2(k) and Lemma 5.3(m), we get 

      ⊢ (𝑃&𝑄) ⇒ (𝑃 ⇒ 𝑄). 

Similarly, ⊢ (𝑃&𝑄) ⇒ (𝑄 ⇒ 𝑃). From this, and Lemma 5.2(l), we obtain 

      ⊢ (𝑃&𝑄) ⇒ ((𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃)). 

Then the Leibniz rule with item (a) yields the result. 

(c) By Lemma 5.2(g), Necessitation rule (N) and (As10) by (MP), we obtain  

     ⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ 𝚫(𝑃 ⇒ 𝑄) and ⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ 𝚫(𝑄 ⇒ 𝑃). 

Then by Lemma 5.2(h) with (As10), we get 

     ⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ (𝚫𝑃 ⇒ 𝚫𝑄) and ⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ (𝚫𝑄 ⇒ 𝚫𝑃). 

From this and Lemma 5.2(l), we obtain 

     ⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ ((𝚫𝑃 ⇒ 𝚫𝑄) ∧ (𝚫𝑄 ⇒ 𝚫𝑃)). 

From this and item (a), by (Leib) rule, we obtain the result. 

(d) From Lemma 5.2(f) in the form 

     ⊢ (𝑃 ≡ (𝑃 ∧ 𝑆)) ⇒ ((𝑃 ≡ (𝑃 ∧ 𝑆) ∧ 𝑄) ≡ ((𝑃 ∧ 𝑆) ≡ (𝑃 ∧ 𝑆) ∧ 𝑄)), 

and associativity and commutativity of  "∧" and Lemma 5.2(d) by the Leibniz 

rule, we get 
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     ⊢ (𝑃 ⇒ 𝑆) ⇒ ((𝑃 ∧ 𝑆) ⇒ 𝑄) ≡ (𝑃 ⇒ (𝑄 ∧ 𝑆))). 

From this and Lemma 5.2(g) by Lemma 5.2(h), we obtain 

     ⊢ (𝑃 ⇒ 𝑆) ⇒ ((𝑃 ∧ 𝑆) ⇒ 𝑄) ⇒ (𝑃 ⇒ (𝑄 ∧ 𝑆))). 

From this, (A11) and double Lemma 5.3(e) using Lemma 5.2(h), we get 

     ⊢ (𝑃 ⇒ 𝑆) ⇒ (((𝑃 ∧ 𝑆) ⇒ 𝑄) ⇒ (𝑃 ⇒ 𝑄)). 

On the other hand, by Lemma 5.2(e) and Lemma 5.3(f), we obtain 

     ⊢ (((𝑃 ∧ 𝑆) ⇒ 𝑄) ⇒ (𝑃 ⇒ 𝑄)) ⇒ ((𝑆 ⇒ 𝑄) ⇒ (𝑃 ⇒ 𝑄)). 

Hence, by Lemma 5.2(h) the result holds. 

(e) From item (d), we have 

     ⊢ ((𝑃 ∨ 𝑄) ⇒ 𝑄) ⇒ ((𝑄 ⇒ 𝑅) ⇒ ((𝑃 ∨ 𝑄) ⇒ 𝑅)) 

By this, Lemma 5.2(n) and Lemma 5.3(f) using Lemma 5.2(h), we get 

     ⊢ ((𝑃 ∨ 𝑄) ⇒ 𝑄) ⇒ ((𝑃 ⇒ 𝑅) ∧ (𝑄 ⇒ 𝑅) ⇒ ((𝑃 ∨ 𝑄) ⇒ 𝑅)). 

From this, Lemma 5.3(d) and Lemma 5.2(a) using (Leib), we obtain 

     ⊢ (𝑃 ⇒ 𝑄) ⇒ ((𝑃 ⇒ 𝑅) ∧ (𝑄 ⇒ 𝑅) ⇒ ((𝑃 ∨ 𝑄) ⇒ 𝑅)). 

Similarly, ⊢ (𝑄 ⇒ 𝑃) ⇒ ((𝑃 ⇒ 𝑅) ∧ (𝑄 ⇒ 𝑅) ⇒ ((𝑃 ∨ 𝑄) ⇒ 𝑅)). Then, by 

Conclusion Lemma 5.3(k), we obtain 

     ⊢ (𝑃 ⇒ 𝑅) ∧ (𝑄 ⇒ 𝑅) ⇒ ((𝑃 ∨ 𝑄) ⇒ 𝑅). 

On the other hand, ⊢ ((𝑃 ∨ 𝑄) ⇒ 𝑅) ⇒ ((𝑃 ⇒ 𝑅) ∧ (𝑄 ⇒ 𝑅)) easily follows 

from Lemma 5.3(b) and Lemma 5.3(f) by Lemma 5.2(l). Hence, by (MP) with 

Lemma 5.2(c) and Lemma 5.3(c), we get the result. 
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(f) Direct from the assumptions, Lemma 5.2(c), item (e) and Lemma 5.2(a) 

using (EA). 

(g) From Lemma 5.3(b) and Lemma 5.3(e), we get 

     ⊢ (((𝑃 ∧ 𝑄) ⇒ 𝑅) ⇒ (𝑄 ⇒ 𝑅)) ⇒ (((𝑃 ∧ 𝑄) ⇒ 𝑅) ⇒ ((𝑃 ⇒ 𝑅) ∨ 

(𝑄 ⇒ 𝑅))). 

From this, and item (d) in the form 

     ⊢ (𝑃 ⇒ (𝑃 ∧ 𝑄)) ⇒ (((𝑃 ∧ 𝑄) ⇒ 𝑅) ⇒ ((𝑄 ⇒ 𝑅)) 

by Lemma 5.2(h), we obtain 

     ⊢ (𝑃 ⇒ (𝑃 ∧ 𝑄)) ⇒ (((𝑃 ∧ 𝑄) ⇒ 𝑅) ⇒ ((𝑃 ⇒ 𝑅) ∨ (𝑄 ⇒ 𝑅))). 

By this, Lemma 5.3(l) and Lemma 5.2(a) by (Leib), we obtain 

     ⊢ (𝑃 ⇒ 𝑄) ⇒ (((𝑃 ∧ 𝑄) ⇒ 𝑅) ⇒ ((𝑃 ⇒ 𝑅) ∨ (𝑄 ⇒ 𝑅))). 

Similarly, ⊢ (𝑄 ⇒ 𝑃) ⇒ (((𝑃 ∧ 𝑄) ⇒ 𝑅) ⇒ ((𝑃 ⇒ 𝑅) ∨ (𝑄 ⇒ 𝑅))). Then, 

by Conclusion Lemma 5.3(k), we get 

     ⊢ ((𝑃 ∧ 𝑄) ⇒ 𝑅) ⇒ ((𝑃 ⇒ 𝑅) ∨ (𝑄 ⇒ 𝑅)). 

On the other hand, from Lemma 5.2(n) using Lemma 5.3(f), we have 

     ⊢ (𝑃 ⇒ 𝑅) ⇒ ((𝑃 ∧ 𝑄) ⇒ 𝑅) and ⊢ (𝑄 ⇒ 𝑅) ⇒ ((𝑃 ∧ 𝑄) ⇒ 𝑅). 

From this and item (f), we obtain 

     ⊢ ((𝑃 ⇒ 𝑅) ∨ (𝑄 ⇒ 𝑅)) ⇒ ((𝑃 ∧ 𝑄) ⇒ 𝑅). 

Hence, by (MP) with Lemma 5.2(c) and Lemma 5.3(c), we get the result. 

(h) From (As10) and Lemma 5.3(h), we get 
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     ⊢ (𝚫(𝑃 ⇒ (𝑃 ∧ 𝑄)) ∨ 𝚫(𝑄 ⇒ (𝑃 ∧ 𝑄))) ⇒ ((𝚫𝑃 ⇒ 𝚫(𝑃 ∧ 𝑄)) ∨ (𝚫𝑄 ⇒

𝚫(𝑃 ∧ 𝑄))). 

By this and Lemma 5.3(l) by (Leib) twice, we obtain 

     ⊢ (𝚫(𝑃 ⇒ 𝑄) ∨ 𝚫(𝑄 ⇒ 𝑃)) ⇒ ((𝚫𝑃 ⇒ 𝚫(𝑃 ∧ 𝑄)) ∨ (𝚫𝑄 ⇒ 𝚫(𝑃 ∧ 𝑄))). 

From this by the Leibniz rule with item (g), we get 

     ⊢ (𝚫(𝑃 ⇒ 𝑄) ∨ 𝚫(𝑄 ⇒ 𝑃)) ⇒ ((𝚫𝑃 ∧ 𝚫𝑄) ⇒ 𝚫(𝑃 ∧ 𝑄)). 

Then, by (MP) with (As11), we obtain ⊢ (𝚫𝑃 ∧ 𝚫𝑄) ⇒ 𝚫(𝑃 ∧ 𝑄). 

On the other hand, From Lemma 5.2(n) and (As10) using (MP), we obtain 

     ⊢ 𝚫(𝑃 ∧ 𝑄) ⇒ 𝚫𝑃 and ⊢ 𝚫(𝑃 ∧ 𝑄) ⇒ 𝚫𝑄. 

Then, by Lemma 5.2(l), we obtain ⊢ 𝚫(𝑃 ∧ 𝑄) ⇒ (𝚫𝑃 ∧ 𝚫𝑄). Hence, by 

(MP) with Lemma 5.2(c) and Lemma 5.3(c), we get the result. 

(i) From Lemma 5.3(b), we get ⊢ 𝚫𝑄 ⇒ (𝚫𝑃 ∨ 𝚫𝑄) and then Lemma 5.3(e), 

we obtain 

     ⊢ (𝚫(𝑃 ∨ 𝑄) ⇒ 𝚫𝑄) ⇒ (𝚫(𝑃 ∨ 𝑄) ⇒ (𝚫𝑃 ∨ 𝚫𝑄)). 

From this, (As10) and Lemma 5.3(f) by (MP), we get 

     ⊢ 𝚫((𝑃 ∨ 𝑄) ⇒ 𝑄) ⇒ (𝚫(𝑃 ∨ 𝑄) ⇒ (𝚫𝑃 ∨ 𝚫𝑄)). 

Hence, by (Leib) with Lemma 5.3(d) and Lemma 5.3(a), we obtain 

     ⊢ 𝚫(𝑃 ⇒ 𝑄) ⇒ (𝚫(𝑃 ∨ 𝑄) ⇒ (𝚫𝑃 ∨ 𝚫𝑄)). 

Similarly, ⊢ 𝚫(𝑄 ⇒ 𝑃) ⇒ (𝚫(𝑃 ∨ 𝑄) ⇒ (𝚫𝑃 ∨ 𝚫𝑄)). Then, by Conclusion 

Lemma 5.3(i), we get ⊢ (𝚫(𝑃 ∨ 𝑄) ⇒ (𝚫𝑃 ∨ 𝚫𝑄)). 
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On the other hand, from Lemma 5.3(b), Necessitation (N) and (As10) using 

(MP), we get 

     ⊢ 𝚫𝑃 ⇒ 𝚫(𝑃 ∨ 𝑄) and ⊢ 𝚫𝑄 ⇒ 𝚫(𝑃 ∨ 𝑄). 

Then, by item (f), we obtain ⊢ (𝚫𝑃 ∨ 𝚫𝑄) ⇒ 𝚫(𝑃 ∨ 𝑄). Hence, by (MP) with 

Lemma 5.2(c) and Lemma 5.3(c), we get the result. 

(j) From Lemma 5.2(k) and Lemma 5.3(f), we get 

     ⊢ (𝑃 ⇒ 𝑄) ⇒ ((𝑃&𝚫(𝑃 ⇒ 𝑄)) ⇒ 𝑄). 

From this and (As8) (⊢ 𝚫(𝑃 ⇒ 𝑄) ⇒ (𝑃 ⇒ 𝑄)) using Lemma 5.2(h), we 

obtain 

     ⊢ 𝚫(𝑃 ⇒ 𝑄) ⇒ ((𝑃&𝚫(𝑃 ⇒ 𝑄)) ⇒ 𝑄). 

On the other hand, from (As6) and Lemma 5.3(e), we get 

     ⊢ ¬𝚫(𝑃 ⇒ 𝑄) ⇒ ( 𝚫(𝑃 ⇒ 𝑄)) ⇒ 𝑄), 

and from Lemma 5.2(k) and Lemma 5.3(f), we obtain 

     ⊢ (𝚫(𝑃 ⇒ 𝑄) ⇒ 𝑄) ⇒ ((𝑃&𝚫(𝑃 ⇒ 𝑄)) ⇒ 𝑄). 

Hence, by Lemma 5.2(h) we obtain 

     ⊢ ¬𝚫(𝑃 ⇒ 𝑄) ⇒ ((𝑃&𝚫(𝑃 ⇒ 𝑄)) ⇒ 𝑄). 

Then, by item (f) and (MP) with (As13), we get ⊢ (𝑃&𝚫(𝑃 ⇒ 𝑄)) ⇒ 𝑄. 

Similarly, ⊢ (𝚫(𝑃 ⇒ 𝑄)&𝑃 ) ⇒ 𝑄. 

(k) Direct from Lemma 5.2(g), Necessitation (N) and (As10) using (MP), we 

get 

      ⊢ 𝚫(𝑃 ≡ 𝑄) ⇒ 𝚫(𝑃 ⇒ 𝑄) 
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By this, (A4) and Lemma 5.2(i), we obtain 

      ⊢ 𝑃&𝚫(𝑃 ≡ 𝑄) ⇒ 𝑃&𝚫(𝑃 ⇒ 𝑄) and ⊢ 𝚫(𝑃 ≡ 𝑄)&𝑃 ⇒ 𝚫(𝑃 ⇒ 𝑄)&𝑃 

 Hence, from item (j) using Lemma 5.2(h) the result holds. 

(l) 

      𝚫(𝑃 ≡ 𝑄) ⇒ ((⊤&𝑃)&𝑅) ≡ (⊤&(𝑄&𝑅))         (As13) 

      ⇔ 〈(Leib)twice + (A5)〉 

      𝚫(𝑃 ≡ 𝑄) ⇒ ((𝑃&𝑅) ≡ (𝑄&𝑅)) 

The second part follows exactly by the similar proof as above. 

(m) By item (l), we get 

      ⊢ 𝚫((𝑃 ∧ 𝑄) ≡ 𝑃) ⇒ (((𝑃 ∧ 𝑄)&𝑅) ≡ (𝑃&𝑅)). 

Then, by Lemma 5.2(g) and (h), we obtain 

      ⊢ 𝚫((𝑃 ∧ 𝑄) ≡ 𝑃) ⇒ ((𝑃&𝑅) ⇒ ((𝑃 ∧ 𝑄)&𝑅)). 

By this, (A7), double Lemma 5.3(e) using (MP), we have 

      ⊢ 𝚫(𝑃 ⇒ 𝑄) ⇒ ((𝑃&𝑅) ⇒ ((𝑄&𝑅)). 

Similarly, ⊢ 𝚫(𝑃 ⇒ 𝑄) ⇒ ((𝑅&𝑃) ⇒ (𝑅&𝑄)). 

(n) From (As5), and (As10) using (N) and then (MP), we get 

      ⊢ 𝚫𝑄 ⇒ 𝚫(⊤ ≡ 𝑄). 

From this, and (A6) by (Leib), we obtain 

      ⊢ 𝚫𝑄 ⇒ 𝚫(⊤ ⇒ 𝑄). 

Hence, by Lemma 5.2(h) with item (m), we obtain 

      ⊢ 𝚫𝑄 ⇒ ((⊤&𝑅) ⇒ (𝑄&𝑅)). 
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Thus, by the Leibniz rule with (A5), we get 

      ⊢ 𝚫𝑄 ⇒ (𝑅 ⇒ (𝑄&𝑅)). 

Similarly, ⊢ 𝚫𝑄 ⇒ (𝑅 ⇒ (𝑅&𝑄)).                                                                             ∎ 

We extend to ℓEQ𝚫
s -logic the following result. The proof is completely the 

same as in [5]. We shall supply the proof because of the importance of the 

statement and to make the paper self-contained: 

Lemma 5.5. 

(a) ⊢ (𝚫𝑃&𝚫𝑃) ≡ 𝚫𝑃; 

(b) ⊢ 𝚫(𝑃 ≡ 𝑄)&𝚫(𝑅 ≡ 𝑆) ⇒ ((𝑃&𝑅) ≡ (𝑄&𝑆)). 

Proof. 

(a) By Lemma 5.4(n), we get 

      ⊢ 𝚫𝑃 ⇒ (𝚫𝑃 ⇒ (𝚫𝑃&𝚫𝑃)). 

On the other hand, by (As6) and Lemma 5.3(e), we obtain 

      ⊢ ¬ 𝚫𝑃 ⇒ (𝚫𝑃 ⇒ (𝚫𝑃&𝚫𝑃)). 

Hence, Lemma 5.4(f) and (As13) by (MP) the result holds. 

(b) Direct from Lemma 5.4(l) and Lemma 5.2(i) by the transitivity of  " ≡ ".∎ 

5.2 𝓵𝐄𝐐𝚫
𝐬 -logic: semantics 

Definition 5.2. 

Interpretation of ℓEQ𝚫
s -logic is a tuple ℜ = (ℰΔ, 𝑒) in which ℰΔ = (𝐸,  ∧, ∨

, ⨂, ~, ∆, 𝟎, 𝟏) is ℓEQΔ
s -algebra and a function 𝑒: 𝐹𝒯 → 𝐸 called the truth 

evaluation of the interpretation that satisfies the following identities for all 

formulas 𝑃, 𝑄 ∈ 𝐹𝒯: 
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𝑒(⊤) = 𝟏;      𝑒(⊥) = 𝟎; 

𝑒(𝑃 ∧ 𝑄) = 𝑒(𝑃) ∧ 𝑒(𝑄); 

𝑒(𝑃 ∨ 𝑄) = 𝑒(𝑃) ∨ 𝑒(𝑄); 

𝑒(𝑃&𝑄) = 𝑒(𝑃) ⊗ 𝑒(𝑄); 

𝑒(𝑃 ≡ 𝑄) = 𝑒(𝑃) ∼ 𝑒(𝑄); 

𝑒(𝚫𝑃) = Δ𝑒(𝑃). 

Let  𝑇 be a theory and  ℜ = (ℰΔ, 𝑒) be an interpretation, then 

If  ℜ ⊨ 𝑃 for all 𝑃 ∈ 𝑇, we write ℜ ⊨ 𝑇, 

and we say that ℜ is a ℰΔ-model of  𝑇. 

Lemma 5.6. 

The inference rules of ℓEQ𝚫
s -logic are sound in the following sense. Let a 

tuple ℜ = (ℰΔ, 𝑒) in which ℰΔ is ℓEQΔ
s -algebra and a function 𝑒: 𝐹𝒯 → 𝐸 

called the truth evaluation of the interpretation: 

(a) If 𝑒(𝑃 ≡ 𝑄) = 𝟏 then, 𝑒(𝐶[𝐩: = 𝑄] ≡ 𝐶[𝐩: = 𝑅]) = 𝟏 for any formula 𝑃; 

(b) If 𝑒(𝑃) = 𝟏 and 𝑒(𝑃 ⇒ 𝑄) = 𝟏, then 𝑒(𝑄) = 𝟏. 

Proof. 

It has been proved that Leibniz is sound in the setting of basic EQ-logic [6] 

(see Lemma 3.9). 

(b) Suppose that 𝑒(𝑃) = 𝟏 and 𝑒(𝑃 ⇒ 𝑄) = 𝟏, then 

      𝑒(𝑃 ⇒ 𝑄) = 𝑒(𝑃) ∼ (𝑒(𝑃) ∧ 𝑒(𝑄)) 

                       = 𝑒(𝑃) → 𝑒(𝑄) = 𝟏 → 𝑒(𝑄) 

                       = 𝟏 ∼ (𝟏 ∧ 𝑒(𝑄)) = 𝟏 ∼ 𝑒(𝑄) = 𝟏 

Then, necessarily  𝑒(𝑄) = 𝟏.                                                                          ∎ 
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It is straightforward using Lemma 3.8, the axioms and the properties of ℓEQΔ
s -

algebras to see all the logical axioms of the ℓEQ𝚫
s -logic are tautologies. 

The following is standard procedure due to Lindenbaum and Tarski, we now 

address the completeness of the ℓEQ𝚫
s -logic. 

Let 𝑇 be a theory over the ℓEQ𝚫
s -logic. Put 

𝑃 ≈ 𝑄  iff   𝑇 ⊢ 𝑃 ≡ 𝑄,  𝑃, 𝑄 ∈ 𝐹𝒯 

It follows from Lemma 5.2(b), Lemma 5.2(d) and Lemma 5.2(j) that " ≈ " is 

an equivalence relation on  𝐹𝒯. 

Let 𝜌: 𝐹𝒯 → 𝐹𝒯 ≈⁄  be the quotient map onto the set of all equivalence classes 

|𝑃| = {𝑄 ∣ 𝑇├ 𝑃 ≡ 𝑄}. The Leibniz rule (Leib) guarantees that the logical 

connectives possess the substitution property for  " ≈ ". In consequence, the 

following operations are well defined on the set  𝐸̅ = {|𝑃|| 𝑃 ∈ 𝐹𝒯}: 

|𝑃| ∧𝑇 |𝑄| = 𝜌(𝑃 ∧ 𝑄); 

|𝑃| ∨𝑇 |𝑄| = 𝜌(𝑃 ∨ 𝑄); 

|𝑃| ⊗𝑇 |𝑄| = 𝜌(𝑃&𝑄); 

|𝑃| ∼𝑇 |𝑄| = 𝜌(𝑃 ≡ 𝑄); 

Δ𝑇|𝑄| = 𝜌(𝚫𝑃). 

The partial order ≤ is also well-defined on 𝐹𝒯 ≈⁄  by 

|𝑃| ≤ |𝑄|  iff  |𝑃| ∧𝑇 |𝑄| = |𝑃| iff  𝑇├ 𝑃 ∧ 𝑄 ≡ 𝑃  iff   𝑇├ 𝑃 ⇒ 𝑄. 

Let ℰ𝑇 = 〈𝐸̅,  ∧𝑇 ,  ∨𝑇 , ⨂𝑇 , ~𝑇 , Δ𝑇 , 𝟎𝑇 , 𝟏𝑇 〉 be the Lindenbaum algebra of the 

theory  𝑇, where  𝟏𝑇 = 𝜌(⊤), 𝟎𝑇 = 𝜌(⊥). By virtue of  

Lemma 5.1-Lemma 5.4, ℰ𝑇 is  ℓEQΔ
s -algebra and the top element 𝟏𝑇 is exactly 

the equivalence class {𝑃 ∈ 𝐹𝒯 ∣ 𝑇├ 𝑃}. Moreover, the quotient map is a truth 

evaluation and the separateness holds as follows: 
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Let |𝑃| ∼𝑇 |𝑄| = 𝟏, then 𝟏 = |𝑃| ∼𝑇 |𝑄| = 𝜌(𝑃 ≡ 𝑄) = 𝜌(𝑃) ∼ 𝜌(𝑄). 

Then, necessarily 𝜌(𝑃) = 𝜌(𝑄); that is |𝑃| = |𝑄|. 

From these arguments with the representation theorem (Theorem 4.7), we 

deduce the following theorem. 

Theorem 5.1. (Completeness) 

The prelinear ℓEQ𝚫
s -logic is generally complete and chain complete for the 

variety of prelinear ℓEQ𝚫
s -algebras. Specifically, for every formula 𝑃 ∈ 𝐹𝐽 and 

for every theory 𝑇 over the prelinear ℓEQ𝚫
s -logic the following are equivalent: 

(a) 𝑇 ⊢ 𝑃. 

(b) For each prelinear ℓEQΔ
s -algebra ℰΔ and each ℰΔ-model of ℜ of  𝑇, ℜ ⊨ A. 

(c) For each linearly ordered ℓEQΔ
s -algebra ℰΔ and each ℰΔ-mode ℜ of  𝑇, 

ℜ ⊨ A. 

Theorem 5.2. (Deduction theorem) 

For each theory 𝑇, formula 𝑃 and arbitrary formula 𝑄 it holds that 

𝑇 ∪ {𝑃} ⊢ 𝑄   iff   𝑇 ⊢ 𝚫𝑃 ⇒ 𝑄 

Proof. 

Let 𝑇 ∪ {𝑃} ⊢ 𝑄. The proof follows by induction on the proof length of  𝑄. 

(a)  If  𝑄: = 𝑃, 𝑄 ∈ 𝑇 or 𝑄 is a logical axiom, then (As8) and Lemma 5.3(m) 

lead to the result. 

(b) Let 𝑄 have been obtained using the rule (EA) by the proof 

      . . . , 𝑅, 𝑅 ≡ 𝑄, 𝑄. 

Then, from the inductive hypothesises 

      𝑇 ⊢ 𝚫𝑃 ⇒ 𝑅, and  𝑇 ⊢ 𝚫𝑃 ⇒ (𝑅 ≡ 𝑄), 
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the Necessitation rule (N) and (As10) using (MP), we have 

      𝑇 ⊢ 𝚫𝑃 ⇒ 𝑅, and  𝑇 ⊢ 𝚫𝚫𝑃 ⇒ 𝚫(𝑅 ≡ 𝑄). 

From this and (Leib) with (As9), we obtain 

      𝑇 ⊢ 𝚫𝑃 ⇒ 𝑅, and  𝑇 ⊢ 𝚫𝑃 ⇒ 𝚫(𝑅 ≡ 𝑄). 

From this and Lemma 5.2(i), we get 

      𝑇 ⊢ (𝚫𝑃&𝚫𝑃) ⇒ (𝑅&𝚫(𝑅 ≡ 𝑄)). 

By this, Lemma 5.5(a) and Lemma 5.4(k) using Lemma 5.2(h), we have 𝑇 ⊢

𝚫𝑃 ⇒ 𝑄. 

(c) Let 𝑄: = 𝑆[𝐩: = 𝑈] ≡  𝑆[𝐩: = 𝑉] have been obtained using the Leibniz 

rule (Leib) by the proof 

       . . . , 𝑈 ≡ 𝑉, 𝑆[𝐩: = 𝑈] ≡ 𝑆[𝐩: = 𝑉]. 

Then, the proof proceeds by induction on the complexity of the formula  𝑆: 

(i)  If  𝑆 is  ⊥, then 

𝑆[𝐩: = 𝑈] ≡ 𝑆[𝐩: = 𝑉] is 𝑆 ≡ 𝑆. 

Using (MP) with Lemma 5.3(m): 

𝑇 ⊢ (𝑆 ≡ 𝑆) ⇒ (𝚫𝑃 ⇒ (𝑆 ≡ 𝑆)), 

we have  𝑇 ⊢ 𝚫𝑃 ⇒ (𝑆 ≡ 𝑆). 

(ii) If  𝑆 is 𝐩 then it follows directly from the inductive hypothesis. 

(iii) Let 𝑆 be  𝐺 ⧠ 𝐻, where  ⧠ ∈ {∧, ∨, &, ≡}. Then we must prove that 

𝑇 ⊢ 𝚫𝑃 ⇒ ((𝐺 ⧠ 𝐻)[𝐩: = 𝑈] ≡ (𝐺 ⧠ 𝐻)[𝐩: = 𝑉]). 

That is  

 𝑇 ⊢ 𝚫𝑃 ⇒ ((𝐺′⧠ 𝐻′) ≡ (𝐺′′⧠ 𝐻′′)) (5.2) 

where 
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𝐺′ ≔ 𝐺[𝐩 ≔ 𝐸],  𝐻′ ≔ 𝐻[𝐩 ≔ 𝐸] 

𝐺′′: = 𝐺[𝐩: = 𝐹],  𝐻′′: = 𝐻[𝐩: = 𝐹]. 

By the inductive assumptions, 

𝑇 ⊢ 𝚫𝑃 ⇒ (𝐺′ ≡ 𝐺′′) and  𝑇 ⊢ 𝚫𝑃 ⇒ (𝐻′ ≡ 𝐻′′). 

Thus, in case that ⧠ ∈ {∧, ≡}, from Lemma 5.2(i), we have 

𝑇 ⊢ (𝚫𝑃&𝚫𝑃) ⇒ (𝐺′ ≡ 𝐺′′)&(𝐻′ ≡ 𝐻′′). 

By this, and (Leib) with Lemma 5.5(a), we get 

𝑇 ⊢ 𝚫𝑃 ⇒ (𝐺′ ≡ 𝐺′′)&(𝐻′ ≡ 𝐻′′). 

Thus, (5.2) follows by Lemma 5.2(h) with Lemma 5.2(o) 

𝑇 ⊢ 𝚫𝑃 ⇒ (𝐺′ ≡ 𝐻′) ≡ (𝐺′′ ≡ 𝐻′′). 

Similarly, using Lemma 5.3(p)  𝑇 ⊢ 𝚫𝑃 ⇒ (𝐺′ ∧ 𝐻′) ≡ (𝐻′′ ∧ 𝐺′′). 

In case that ⧠ is "&", from rule (N), (MP) with (As10), we get 

𝑇 ⊢ 𝚫𝚫𝑃 ⇒ 𝚫(𝐺′ ≡ 𝐺′′) and  𝑇 ⊢ 𝚫𝚫𝑃 ⇒ 𝚫(𝐻′ ≡ 𝐻′′). 

By this, and (Leib) with (As9), we obtain 

𝑇 ⊢ 𝚫𝑃 ⇒ 𝚫(𝐺′ ≡ 𝐺′′) and  𝑇 ⊢ 𝚫𝑃 ⇒ 𝚫(𝐻′ ≡ 𝐻′′). 

Hence, from Lemma 5.2(i), and the Leibniz (Leib) with Lemma 5.5(a), 

we have 

𝑇 ⊢ 𝚫𝑃 ⇒ 𝚫(𝐺′ ≡ 𝐺′′)&𝚫(𝐻′ ≡ 𝐻′′) 

Thus, (5.2) follows from Lemma 5.5(b) using Lemma 5.2(h). In case 

that ⧠ is ∨, from Lemma 5.3(q) and Lemma 5.2(i), we get 

𝑇 ⊢ ((𝐺′ ≡ 𝐺′′)&(𝐻′ ≡ 𝐻′′)) ⇒ 
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                             (((𝐺′∨ 𝐻′) ≡ (𝐺′′∨ 𝐻′))&((𝐺′′∨ 𝐻′) ≡ (𝐺′′ ∨ 𝐻′′))) 

By this and the transitivity of  " ≡ " using Lemma 5.2(h), we have 

        𝑇 ⊢ ((𝐺′ ≡ 𝐺′′)&(𝐻′ ≡ 𝐻′′)) ⇒ ((𝐺′∨ 𝐻′) ≡ (𝐺′′∨ 𝐻′′)). 

Hence, by this, the inductive assumptions, Lemma 5.2(i) and Lemma 

5.5(a) using Lemma 5.2(h), (5.2) holds. 

(iv) Let 𝑆 be 𝚫𝐻. Then we have 

(L.1)  𝑇 ⊢ 𝚫𝑃 ⇒ (𝐻′ ≡ 𝐻′′)                                (Inductive assumption)  

(L.2)  𝑇 ⊢ 𝚫𝚫𝑃 ⇒ 𝚫(𝐻′ ≡ 𝐻′′)     ((L.1), rule (N), (As10) and (MP)) 

(L.3)  𝑇 ⊢ 𝚫𝑃 ⇒ 𝚫(𝐻′ ≡ 𝐻′′)                      ((L.2), (Leib), and (As9))  

(L.4) 𝑇 ⊢ 𝚫𝑃 ⇒ (𝚫𝐻′ ≡ 𝚫𝐻′′) ((L.3), Lemma 5.4(c), Lemma 5.2(h)) 

(d) Let 𝑄: = 𝚫𝑅 have been obtained using rule (N) by the proof 

          . . . , 𝑅, 𝚫𝑅. 

Then, from the inductive assumptions: 𝑇 ⊢ 𝚫𝑃 ⇒ 𝑅, the Necessitation rule 

(N), and (As10) using (MP), we get: 𝑇 ⊢ 𝚫𝚫𝑃 ⇒ 𝚫𝑅. From this and (Leib) 

with (As9), we obtain 𝑇 ⊢ 𝚫𝑃 ⇒ 𝚫𝑅. Hence, by Lemma 5.2(h) with (As8), we 

get the result. 

The converse implication is obtained using rules (N) and (MP).                            ∎ 

Remark 5.3: 

One of the useful properties of 𝚫-connective is that the deduction theorem 

cannot be proved without introducing it. It is also necessary to develop the 

predicate ℓEQ𝚫
s -logic. 
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Conclusion and Future Work 

We continue in this thesis the study of EQ-algebras, begun in [7, 8, 22, 23]. 

We introduced and studied a class of separated (not necessarily good) lattice 

EQ-algebras that may be represented as subalgebras of products of linearly 

ordered ones. Such algebras are called representable. Namely, we enriched 

separated lattice EQ-algebras with a unary operation (the so called Baaz delta), 

fulfilling some additional assumptions. The resulting algebras are called 

ℓEQΔ
s -algebras. One of the main results of this thesis is to characterize the 

class of representable ℓEQΔ
s -algebras. We showed that prelinearity alone 

characterizes the representable class of ℓEQΔ
s -algebras. We also supplied a 

number of useful results, leading to this characterization. We also formulated 

the corresponding ℓEQ𝚫
s -logic and established its completeness for the 

semantical domain of ℓEQΔ
s -algebras. We in detail introduced syntax and 

semantics of the ℓEQ𝚫
s -logic and prove various theorems characterizing its 

properties including deduction theorem. 

Finally, let us remark that ℓEQ𝚫
s -logic open the door for developing predicate 

ℓEQ𝚫
s -logic; also to introduce and study a class of ℓEQ𝚫

s -logics whose 

semantical domain based on separated (need not to be good) EQ-algebras. 
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