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ABSTRACT

A formal theory of new class of many-valued logics, called EQ-logics, has
been recently introduced by M. Dyba and V. Novak. They are based on a
special algebra of truth values called EQ-algebra introduced by V. Novak and
open the door to an alternative development of mathematical fuzzy logics by
starting with equivalence instead of implication. This direction can be
considered as a generalization of the equational classical logics due to Gries
and Schneider and it is justified by the idea presented by G.W.Leibniz that “a
fully satisfactory logical calculus must be an equational one”. Moreover, the
formal proofs can be more effectively formed in an equational style; that is
substitution of equals for equals, this makes it easier to discover proofs than it
is when using the Hilbert style of deduction, rendering proofs more natural

and more calculational.

This work continues the research in EQ-logics and their algebraic semantics
that can be taken as special kind of fuzzy logics where completeness with
respect to chains is the constitutive feature of all fuzzy logics. In particular,
we introduce and study a class of separated (not necessarily good) lattice EQ-
algebras that may be represented as subalgebras of products of linearly ordered
ones. Such algebras are called representable. Namely, we enrich separated
lattice EQ-algebras with a unary operation (the so called Baaz delta), fulfilling
some additional assumptions. The resulting algebras are called ¢EQj}-
algebras. One of the main results of this thesis is to characterize the class of
representable #EQ}-algebras. We also provide a number of useful results,
leading to this characterization. This also allows us to develop a more general
fuzzy EQ-logic in which the basic connective is fuzzy equality and the
implication is derived from the latter. Precisely, we formulate the

corresponding #EQj-logic which is rich enough to enjoy the completeness



property and its set of truth values is formed by #EQ}-algebras in which the
fuzzy equality is one of the basic operations. The implication operation (as
well as the corresponding connective) is derived. We in detail introduce syntax
and semantics of the #EQj-logic and prove various theorems characterizing
its properties including completeness. Formal proofs in this thesis proceed

mostly in an equational style.
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Chapter 1
Introduction

Mathematical logic has been for many years developed on the basis of
implication as the main connective. In the recent past, new direction of the
development has been initiated which is called equational logic [14, 29]. This
logic is based on equality as the main connective. This direction is justified by
the idea presented by G.W.Leibniz [2] that a fully satisfactory logical calculus
must be an equational one. It is also argued by its proponents see [14] that
equational logic is the pedagogically proper setting to do proofs because its
main tool, substitution of equals for equals, makes it easier to discover proofs
(than it is when using the Hilbert style of deduction), rendering proofs more

natural and more calculational.

It brought an idea to develop also (fuzzy) many-valued logics on the basis of
fuzzy equality (equivalence) as the principal connective. Accordingly, a
formal theory of new different many-valued logics, called EQ-logics, has been
recently introduced by M. Dyba and V. Novéak [6]. They are based on a special
algebra of truth values called EQ-algebra introduced by V. Novak in [22] (
also [7, 8, 23]). Unlike the residuated lattices, the basic operation in it is a
fuzzy equality while implication is derived from it. Its axioms reflect basic
properties which fuzzy equality should have to fit the supporting structure,
namely the ordered set. Its original motivation comes from the study of higher-
order fuzzy logic [20] that was obtained as a generalization of simple type
theory in the style of L. Henkin who developed in [16] a very elegant theory
[1] in which the basic connective is equality.

As we believe that completeness w.r.t. chains is the constitutive feature of all
fuzzy logics (see papers [3, 4] where reasons for this belief are presented), EQ-
logics satisfying chain completeness are called here fuzzy EQ-logics.



Analysis of necessary properties of the fuzzy equality revealed that we cannot
consider the fuzzy equality in full generality without means enabling us to deal
with the classical (crisp) equality. This is possible using the Delta-connective.
Thus, unlike the residuated fuzzy logics [10, 17] where the A-connective is
interesting but dispensable option, the role of it in fuzzy equality-based logics
is much deeper [5, 6]. We conclude that the general fuzzy equivalence is not
sufficient and a crisp equivalence is necessary for well-behaving logic. On the
other hand, the current investigation of fuzzy EQ-logics [5, 6] shows that
goodness, is sufficient for the resulting logic has many reasonable properties
including completeness and Delta-deduction theorem. The goodness axiom
means that each element x is equal to 1 in the degree x. It implies that the
algebra is separated (i.e., two elements equal in the degree 1 must be identical)
but not vice-versa. Therefore, Separateness turned out to be indispensable for

any kind of fuzzy equality based logic.

In this work, we continue developing the formal theory of fuzzy EQ-logics
and their algebraic semantics. Namely, we focus more closely on the important
role played by expanding the EQ-logics by the Delta-connective in our further
development of both separated EQ-algebras and the corresponding EQ-logics.
The long term goal of the research is to develop more general fuzzy EQ-logics

whose semantics based on separated (need not to be good) EQ-algebras.

One of the important algebraic consequences of goodness axiom is
axiomatizing the class of representable good EQ-algebras (expanded by Delta-
connective) [7, 8]. This is mainly based on the fact that good EQ-algebras give
raise to BCK-algebras [11, 25]. Further, development of this direction could
also deal with the more challenging problem of characterizing separated (not

necessarily good) representable EQ-algebras. This also allows us to develop a



more general fuzzy EQ-logics whose semantics based on separated (need not

to be good) EQ-algebras.
The thesis is made up of six chapters organized as follow:

In chapter 2: A summary of syntax and semantics of propositional logic are
introduced. Moreover, all basic definitions and notions of formula, logical
axioms, inference rules and formal proof are presented. While we also present

short notes on soundness, and completeness of propositional logic [29].

In chapter 3: This chapter is divided into two parts; the first part is customized
mainly for recalling the definitions of residuated lattices and BL algebra. The
concept of EQ-algebras are introduced, the basic definitions, important
essential properties, special kinds of EQ-algebras, and some examples of EQ-
algebras [8, 23] are provided. Moreover, we display prelinear EQ-algebras,
and also, we introduce the prefilters and filters of EQ-algebras [7]. Finally, we
present characterizing both of the representable class of good EQ-algebras,
good EQ-algebras with a unary operation "A", and its prelinear version [5, 7,
8]. The second part is dedicated for introducing an overview for the basic EQ-
logic and show its fundamental properties whose good EQ-algebras as the
algebraic structure of its truth values. Also, the completeness theorem of the
basic EQ-logic is introduced [6]. As well as the prelinear EQ,-logic and its
completeness theorem are showed [5]. To this point, we discuss the previous

studies that were introduced in the last years.

In chapter 4. We introduce and discuss a special type of EQ-algebras
called #EQ3j-algebras. As well as, introducing and studying in-depth the filters
and the congruences of ¢EQj-algebras. Moreover, characterizing the

representable class of #EQ3;-algebras will be introduced.



In chapter 5: We present the #EQj-logic and prove its main properties
including the completeness theorem and the deduction theorem. It should be
given emphasis to that formal proofs in this thesis proceed mostly in the

equational style.

In chapter 6: The future work and conclusions obtained from the thesis are

given.



Chapter 2
Equational Propositional Logic

Mathematical logic, or as we will simply say, "logic", represents the most
general means of mathematical reasoning used by mathematicians and
computers. Its core consists of the study of the form, meaning, use, and

limitations of logical deductions, the so-called proofs.

Classical logic is usually presented as implication is the basic connective but
there exists also approach based on equivalence as basic connective instead of
implication which, however, gains gradually still more and more interest, too
(see, e.g. [29]). There are at least two main reasons for that. First, equality
(equivalence) seems to be more essential connective than implication. This
direction is justified by the idea presented by G.W.Leibniz (cf. [2]) that a fully
satisfactory logical calculus must be an equational one. Moreover, the formal
proofs can be more effectively formed in an equational style. The second
reason is also argued by its proponents (see, for example, [14]) that equational
logic is the pedagogically proper setting to do proofs because its main tool,
substitution of equals for equals, makes it easier to discover proofs (than it is
when using the Hilbert style of deduction), rendering proofs more natural and

more calculational. Both approaches are equivalent.

More precisely, in this chapter we introduce an overview of the simplest part
of mathematical logic, the equational propositional logic, or simply equational
logic (also namely, Boolean logic, propositional calculus, sentential logic, and
sentential calculus). You will get acquainted with the notions of formula,
logical axioms, inference rules, and formal proof, while we also present some
backgrounds in syntax and semantics of equational logic. We will show that
equational logic of [29] is sound (with respect to the conventional model of
evaluation of Boolean expressions) and complete. Proofs have been presented



in either the Hilbert style or the equational style. We explain both styles and
argue that the equational style is superior. The equational style makes it
possible to develop and present calculations in a rigorous manner, without
complexity and detail overwhelming (in contrast to other proof style) (for the
details see [14, 15] and also [30]).

2.1 Syntax of Equational Logic

Equational Logic is a formal language, which has a set of symbols (alphabet),
a set of formation rules (syntax) that tells us whether a formula in propositional
logic is well-formed formula (grammatically correct), and a semantics that
assigns formulas a truth value (meaning). It is a natural language, like English.
This formal language has been constructed to formulate, for example, the
axioms, theorems, and proofs. In that context, the connectives played an
important role. Therefore we include the following symbols in the
propositional logic languages: "=" (for “negation”), " A " (for “conjunction”),

" v " (for “disjunction”), " = " (for “implication”), and " = " (as a symbol for

“equivalence”), and Boolean constants, namely T and L.
Definition 2.1. ([29]) (Alphabet of Equational Logic language)

The language of equational logic consists of propositional variables p, q,...,

binary connectives -, A, V,—, =, and Boolean constants, namely T and L.
R shall stand for the language of equational logic.

Definition 2.2. ([29]) (Equational Logic Formulas)

All Boolean variables are atomic formulae, and so are the symbols T and L. If
P and Q are formulae, then so are the following =P, PAQ,P Vv Q,P — Q, and
P = Q.



Let us we denote by F5 the set of all formulas for the given language R, and
by ' the special axioms (sometimes also non-logical axioms), that is any

subset T' € Fy.

2.2 Semantics of Equational Logic

The semantics of Boolean formulae is defined through a process that allows

us to assign a logical meaning to formulas, and this under certain conditions.

Definition 2.3. ([29]) (Truth Evaluation)

A truth evaluatione is a function e: Fy —» S, S ={T,F} is defined as
follows: if p € F5 is a propositional variable, then e(p) € S, while e(T) =
Tand e(L) = F. Furthermore

e(—lP) = —|€(P)
e(POQ)=e(P)©Oe(Q),where ©e{A,V,—>,=}

Table 2-1 Truth Table

p q -p pAq | pvq | p~q |(P=q)
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Definition 2.4. ([29]) (Truth Tables)

A truth-table is a table for visually displaying the distribution of truth and
falsity through a composite formula given the basic inputs from the atomic
formulae. There are five functions or operations (Boolean functions), that take
values from the set {F, T} as inputs and produce values in the same set as

outputs, and Table 2-1 describes their behavior, which known as a truth table.



Definition 2.5. ([29]) (Tautology)
A formula P € Fy is a tautology if e(P) = T for each truth evaluation e :

Fr = S. We use £, P as the notation to indicate that P is a tautology.

Example 2.1. ([29]) (Some tautologies)
T and g — q are tautologies. The latter follows from e(q — q) = e(q) — e(q)
and Table 2-2.

Table 2-2: Truth table of (g — q)

q q q-q)
T T T
F F T

2.3 Proofs and Theorems

Equational logic is developed to write down theorems. It is a tool through
which we formulate and establish mathematical truth. This truth is captured
absolutely (tautologies) or relatively to certain hypotheses (tautological
implications). Thus, our main task when we use Boolean logic, is to discover
and verify tautologies, and more generally, to discover and verify tautological
implications. The process of certifying tautologies and tautological
implications is syntactic instead of semantic (truth table driven) and is called

theorem proving.

First off, axioms are usually statements that are taken to be true. There are two
types of axioms: The logical axioms are certain well-chosen absolute truths;
therefore, they are tautologies. The other type is called special axioms, also

named non-logical axioms or assumptions or hypotheses.



2.3.1 Logical Axioms

Logical axioms codify the most basic properties of the connectives, and
describe its behavior. The following list presents the logical axioms for
propositional logic (see [29]).

Definition 2.6. (Logical Axioms)

In what follows, P, Q, R denote arbitrary formulae:

(1) Associativity of = (P=Q)=R)=(P=(Q=R))
(2) Symmetry of = P=0Q)=(Q=pP)
(3) Tvs. L T=1=1
(4) Introduction of — -P=P=1
(5) Associativity of v (PVQ)VR=(PV(QVR)
(6) Symmetry of v PVvQ=QVP
(7) ldempotency of v PVP=P
(8) Distributivity of v Over = PV(Q=R)=PVQ=PVR
(9) Excluded Middle PV =P
(10) Golden Rule PAQ=P=Q=PVQ
(11) Implication P->Q=PVQ=Q

2.3.2 Inference Rules

Inference rule is a logical construct which takes premises, analyzes their

syntax and returns a conclusion (deriving new formulas from old ones).

The following two are our Inference Rules of Boolean logic, given with the

help of the syntactic variables P, Q, C and p!:

The Leibniz rule (Leib)

" The symbol p is a metavariable for any propositional variable p, g, ....
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o
0]
S

=
=)
i
)
Il
)
a=)
i
S

The Equanimity rule (EA)
P, P=Q

Q

An instance of an inference rule is obtained by replacing all the letters P, Q, C

by specific formulae and p by a specific variable.

We call the "numerator" the premises (we also say hypotheses or assumptions)
and the "denominator" the conclusion of the rule.

The Leibniz rule (Leib) allows us to "substitute equals for equals™ in an
expression without changing the value of that expression. It therefore gives a
method for demonstrating the equality of two expressions. In this method, the

format we use to show an application of Leibniz is

Clp=P]
= (P =0Q)
Clp = Q]

The first and third lines are the equal expressions of the conclusion in the

Leibniz rule; the annotation on the middle line is the premise "P = Q".

Once we have written "P = Q", we can choose any formula C whatsoever and
any variable p and construct the output, first effecting two substitutions and
then connecting the results with the connective " = " in the indicated order.
Note that the Leibniz rule is not functional: Infinitely many different outputs

are possible for a given input "P = Q".
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Definition 2.7. ([29]) (Proofs)

A proof is any finite (ordered) sequence of formulae (theorems), where each
formula is a premise or logical axiom or a derived formula from earlier

sentences in the proof by one of the rules of inference.
The last formula is the theorem (also called goal) that we want to prove.

2.3.3 Equational versus Hilbert-style proofs

A Hilbert-style proof consists of a sequence of formulae written vertically on
the page, numbering every row for referring to previous formulae, and
provided by annotations to explain what we are doing at every step and why.
Each formula is hypnosis or an axiom or the conclusion of an inference rule
whose premises appear previously (axioms, or proved theorems). Such

formula is called a theorem.
As an example, we give a simple annotated Hilbert proof from [29]:

Example 2.1. ([29]) (the other equanimity)

Q, P=QW+P.
Proof. ([29])
1) @ (hypothesis)
(2 P=Q (hypothesis)
B) P=Q=Q=P (Symmetry of =)
4 Q=P ((2) + (3) + (EA))
5) P (D) + &)+ (EA)

Example 2.2. ([29]) (Transitivity of "= ")
P=Q, Q=RF+P=R.
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Proof. ([29])

1) P=qQ (hypothesis)

(2) Q=R (hypothesis)

3) (P=Q)=P=R) ((2)+ Leib;C — partis"P = p", p is fresh?)
(4) P=R (1) + (3) + (EA))

On the other hand, the equational style proof consists of a sequence of
formulas of the formP, =P, P,=Ps..,P,_; =P, Each of the
formulas P;,_; = P; must be either an assumption, or a logical axiom, or
derived earlier, or derived using the Leibniz inference rule. It consisting of a
series of applications of the Leibniz rule is linked implicitly by the transitivity.
Each step of the proof is provided by an informative annotation to explain how
we arrived at the formula P;_; = P;. The following is the equational style

proof layout:

Py
< (Annotation)
P,
(Equational Style Proof Layout)
Pn_y
< (Annotation)

Py

Since the symbol " = " is associative, it is not conjunctional; thatis "P = Q =
R" does not mean "P = Q" and "Q = R"; therefore, the symbol " < " is our

conjunctional " = " and will appear only in equational proofs and only on their

2 “Fresh” means that p does not occur in any of P, Q, R.
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leftmost column at that. Thus "P & Q & R" means only "P = Q" and "Q =
R". It is meant that P, = P, and P, = P; and P; = P,, etc.

When using Leibniz we must be also very clear as to what the "C-part" is and
state any special requirements that we may have put on p, e.g., "freshness".
For Leibniz, the suggested style of annotation is

Axiom

Leib + {Hypothesis]; "C — part" ...
Theorem

We now present the equational style proof for Example 2.1.
P
& (hypothesis (P = Q))
Q

Example 2.3. ([29]) - P = P.
Proof.

PvP=P
< ((Leib) + Axiom: PV P = P;"C — part":p = P)
P=P

Example 2.4. ([29]) - PV T.
Proof. ([29])

PVvT

< ((Leib) + Axiom: T =1=1;"C — part": P V p)
Pv(L=1)

o (Axiom (PV(Q=R)=PVQ =PVR))
Pvi=PvVvl
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Remark 2.1.

(1) The first formula of equational style proof is equivalent to the last one.
Thus, the equational proof need not be built up to the final formula as in the
case of Hilbert-style proof; whenever convenient, it can start with it and end
up with some known formula as in Example 2.4. Moreover, each step is an
application of Leibniz and we need not to mention none of the inference rules
explicitly in an equational proof, this reduces the amount of writing when
presenting the proof and the amount of reading in understanding it.
Consequently, the proofs are more concise and thus, easy to read and
remember (for more details see [29] or [14]).

(2) In the equational style proof, the aim of each step is to replace the
expression using Leibniz (substitution of equals by equals). The shape of the
expression and the already existing theorems give guidance to construct the
proofs easily and then to remember it. Furthermore, making it possible to teach

its development.

Many theorems, which describe the main properties of the propositional logic,

have proofs were introduced in [29].

2.4 Soundness and completeness of propositional logic

Syntax and semantics are two parts of propositional logic. Soundness and
completeness theorems for propositional logic show the interplay between
these two components. The first states that our logic is truthful, or sound. That
is, wheneverT' - P, then alsoT Eq,, P (i.e. each provable formula is a
Boolean tautology). The second states that the chosen axioms (and inference
rules) are "just the right ones” to ensure that syntactic proofs are able to
generate all tautologies. That is, whenever I' ¢, P, then also T' = P (i.e.

each true formula is provable).
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2.4.1 Soundness

Propositional logic is sound with respect the standard interpretation. To see
this, first, prove that if premises of each inference rule are valid then so is its
conclusion. Second, check that each axiom is valid, and this is justified by
truth tables.

Lemma 2.1. ([29])

The two inference rules preserve truth. That is,

P,P =Q Fiqut Q
, and

P =0 Fraut R[p =P] = R[p = Q]
Theorem 2.1. ([29]) (Soundness of Propositional Calculus)

I' - Pimpliesthat T’ =y P.

2.4.2 Completeness

It is shown that propositional logic is complete in [29]. Completeness means
that every semantically valid formula can be proved syntactically. There are
two methods of proofs. The first one is straightforward. It shows how one can
use the hypothesis that a formula P is a tautology in order to construct its
formal proof. The second proof shows how one can deduce that a formula P
is not a tautology from the fact that it doesn’t have a proof. It is hence called
a contrapositive construction method. The term contrapositive refers to an

implication. The contrapositive of the formal implication "P — Q" is "=Q —
—P", therefore proving " - P — Q" is as good as proving - =Q — =P by
Equanimity. The last methodology is used in [29] to prove the completeness

of propositional logic.
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The proof idea of completeness of propositional Logic in [29] is based on a
few constructions along with a few claims and their proofs as follows:

First of all, assume the hypothesis side, I' t* P. Then construct a set of
formulae, A which is as large as possible with the properties that it includes T,
but also A #+ P. A is so big a set of assumptions that anything you can prove

from them, with any proof, can also be proved by a proof of length one.

We also, define a state v by setting, for each variable p,v(p) = Tiff p € A;

which represents our Main Claim:
For all formulae P, v(P) = T iff P € A (equivalently,v(P) = Fiff P & A)

Then, our goal is to prove this claim. The proof is by induction on the

complexity of P.

After that, we can easily conclude the proof as follows: by the Main Claim,
every formula P in A and hence every formula P inT since I’ € A satisfies
v(P) = T. On the other hand, as A # P it must be P ¢ A; thus, again via the
Main Claim, v(P) = F. Therefore T ¥ P. This completes the proof.

Theorem 2.2. ([29]) (Completeness of Propositional Calculus)
I' Eeaue P impliesthatT - P.
Theorem 2.3. ([29]) (Deduction Theorem)
For each theory T, formula P and arbitrary formula Q it holds that:

TU{P}FQiff T+ P = Q.
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Chapter 3
EQ-Logics: Fuzzy Logics Based on Fuzzy Equality

When tracing back the development of logic we can distinguish two basic
directions: (a) implication is the basic connective and modus ponens is the
fundamental inference rule and (b) logical equivalence (taken as an equality
between truth values) is the basic connective and the basic inference rules are
equanimity and Leibniz ones. Direction (a) is popular than (b) for many years;
but the latter, however, gains gradually still more and more interest, too (cf.,
e.g. [14, 29]). There are at least two main reasons for that. First, equality
(equivalence) seems to be more essential connective than implication. This
direction is justified by the idea presented by G.W.Leibniz (cf. [2]) that a fully
satisfactory logical calculus must be an equational one. Moreover, the formal
proofs can be more effectively formed in an equational style. The second
reason is also argued by its proponents (see, for example, [14]) that equational
logic is the pedagogically proper setting to do proofs because its main tool,
substitution of equals for equals, makes it easier to discover proofs (than it is
when using the Hilbert style of deduction), rendering proofs more natural and

more calculational.

T T T T
0 0 01 1 10 02 04 06 08 1

(a) Boolean Logic (b) Many-valued logic
Figure 3-1 Boolean logic versus Many-valued logic
The restriction of classical logic is that every proposition either completely

true or completely false (no middle). However, there are also propositions with

variable answers. The following example shows how a classical argument fails
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to work when one passes from classical logic to Multi-valued logic: The
sentence "The patient is young" is true to some degree. The lower the age of
the patient (measured e.g. in years), the more the sentence is true. Figure 3.1
shows that the truth of a many-valued proposition is a matter of degree.

Classical logic is just a special case of many-valued logic and of course fuzzy
logic, so the "fuzziness" can be restricted. In other words, when many-valued
logic is restricted to the values zero and one (true, and false), it becomes
classical logic. So, if we restrict each connective in many-valued logic to zero

and one, it becomes classical connective.

As in the classical logic, there are two basic directions in many-valued logics.
First, logics based on implication while (fuzzy) equality is derived from it.
EQ-logics whose EQ-algebras as the algebraic semantics is an example of this
direction. The second direction is based on (fuzzy) equality instead of
implication, for example the basic logic (BL) which has semantical domain of
the residuated lattice (see [17]). These directions generalizes the
corresponding directions in classical logic. Unlike classical logic, which can
be equivalently developed starting either by implication or by equivalence
(cf.[29]), many-valued logics, however, the situation is different; implication
based and equality based approaches are no more equivalent; i.e. the fuzzy

EQ-logic is not equivalent with the residuated fuzzy logics.

In this chapter, we present a specific developed formal logic in which the fuzzy
equality is basic connective and the implication is derived from it. Moreover,
the fusion connective (strong conjunction) is non-commutative. This logic is
called EQ-logic and can be considered as special type of fuzzy logic (cf. [6])
and a generalization of the equational classical logics due to Gries and
Schneider [14]. First, we introduce of the concept of EQ-algebra and its main

properties as well as the corresponding propositional EQ-logics and show its
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main properties including the completeness property. Furthermore, we show
the important effect of adding A-connective to EQ-logic language and how it
is necessary to develop its first-order version (cf. [5]). Finally, we present the

concept and properties of prelinear EQ,-Logic.

3.1 EQ-Algebras: The Algebraic Semantics of EQ-Logics

Each many-valued logic is uniquely defined by the algebraic properties of its
truth values structure. It is generally for many years accepted that this
algebraic structure must be a residuated lattice in fuzzy logic, possibly
fulfilling some extra properties (the definition and several useful properties of
residuated lattices can be found in [12]). Unlike the stated direction in
algebraic semantics where multiplication and residuation are the basic
operations, and the most important connectives are strong conjunction and
implication in the corresponding fuzzy logics, there is a new direction in the
development of logic justified by G.W. Leibniz’s idea (cf. [2]). Hence, as an
alternative to residuated lattices, a special algebra called EQ-algebra has been
presented by Novak [22] and elaborated in [23]. The original motive was to
present a special algebra of truth values for fuzzy type theory (FTT) (see [21])
that generalizes the classical type theory (cf. [1]) where the basic connective
is equality instead of implication. Analogously, the main connective in FTT
should be fuzzy equality " ~ ". Another motive for EQ-algebras arises from

the equational style of proof in logic.

From the point of view of logic, the basic difference between residuated
lattices and EQ-algebras lies in how the implication operation is obtained.
Where in residuated lattices, it is obtained from a (strong) conjunction, in EQ-
algebras, it is derived from fuzzy equality. As well as, EQ-algebras behave
differently than residuated lattices, as is shown (see [8]) by the fact thatp —
q = 1 doesn’t imply that p < q. Therefore, the two kinds of algebras differ in
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multiple basic points, although their many similar or matching properties.
Indeed, EQ-algebras generalize residuated lattices since they relax the tie
between multiplication and residuation, the so-called adjointness property (i.e.
between conjunction and implication in logic); the implication is defined from
the fuzzy equality" ~" by the formulap - q = (p Aq) ~ p. Since this
equation holds also for the biresiduum, every residuated lattice can be

considered as an EQ-algebra but not vice versa, see Example 3.2.

3.1.1 Residuated lattices

Definition 3.1. ([23])

An algebra £ = (L, A, vV, ®, =,0,1) of type (2, 2, 2, 2, 0, 0) is called a
commutative, integral, bounded residuated lattice if the following conditions
are satisfied:

(L1) (L, A, Vv,0,1) is a lattice with the bottom and top elements 0 and 1,
respectively (with respect to the lattice ordering " < "),
(L2) (L, ®,1) is acommutative monoid with the unit element 1,

(L3) ® and = form an adjoint pair, i.e. for all p,q,r € L it holds that
p®q<riff p<qg=r (Adjointness property)

The binary operation " A" is called meet, " v " is called join," @ " is called

multiplication, and " = " is called residuation.

There are many properties of residuated lattices, see [12, 24]. In the following
definition, we shall introduce an algebra called BL-algebra (a residuated
lattice, fulfilling some additional properties) which is the algebraic semantics
of the basic many-valued logic, BL; that is considered, actually an example of
fuzzy logic based on the implication as a basic connective instead equivalence

(for, more details see, [17]).
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Definition 3.2. ([23])

A residuated lattice £L = (L, A, V, ®, =,0,1) is a BL-algebra iff the

following two identities hold for all p,q € L:

(@) Prelinearity: (p = q) vV (q = p) = 1;
(b) Divisibility: p @ (p = q) =p Agq.

MTL-algebras are residuated lattices fulfilling the prelinearity condition. They
are the algebraic semantics of the Monoidal t-norm based logic (or shortly,
MTL) (for, more details see, [10]).

3.1.2 EQ-algebras

I.  Definition and Fundamental Properties of EQ-algebras
Definition 3.3. ([8])

An algebra € = (E, A, ®,~,1) of type (2, 2, 2,0) is called an EQ-algebra

where for all p,q,7,s € E:

(E1) (E, A1) isaAn-semilattice with top element 1. Wesetp < qiffpAq =

p;

(E2) (E, ®,1) is amonoid and & is isotone in both arguments w.r.t. p < q,
EJp~p=1; (reflexivity)
EDN((pAg) ~1NQR(s~p)<r~(sAq); (substitution)
E~DRT~s)<(p~1)~(q~s), (congruence)
(E6) (pAgAT) ~p<(PAQ) ~D; (monotonicity)

ENp&®q=<p~q.

The binary operation" A" is called meet (infimum)," ® " is called

multiplication, and "~" is a fuzzy equality.
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The substitution axiom (E4) is motivated by the substitution principle
formulated already by G.W. Leibniz: “if P equals Q then P can be replaced by
Q wherever P occurs”. The congruence axiom naturally generalizes the
following property of the classical equality: if p = q and r = s, then the truth

of p = r is the same as the truth of g = s.
Remark 3.1. ([8])

The definition of EQ-algebras in [[23], Definition 1] includes extra axiom,

namely,

PAQ ~p<(PAGAT)~ (PAT) (3.1)

It has been shown in [8] that we do not need this axiom because it is derived
from the other axioms. Moreover, Definition 3.3 differs from the original
definition of EQ-algebras ([23], Definition 1) in that the multiplication "®"
need not be commutative. Also, that the commutativity axiom of
multiplications is superfluously restrictive, i.e. a weaker requirement put on
non-commutative multiplications is sufficient to guarantee all expected

general properties of fuzzy equalities and EQ-algebras.

Clearly, " < " is the classical partial order. We set, forp,q € E:

(3.2)
(3.3)

p2>q=(PAq ~p
p=p~1
If £ also contains a bottom element 0, then we define the unary operation —
on E by

-p=p~0 p€EE (3.4)

The derived operation (3.2) is called implication. Hence, we may rewrite (E6)
and (3.1) as
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(3.5)
(3.6)

p->(@Ar)<p-gq
poq<=(pAr)-q

We will introduce the essential properties of EQ-algebras presented in ([8, 19,
23]).

Lemma 3.1. ([8, 19, 23])

Let € be an EQ-algebra. For all p, q, v € E, it holds that:

@ p~q=q~p; (symmetry)
@~ ~r)< @~ (transitivity)
© @~s)R®((pAg) ~r)<(sAq) ~T;

d @A ~p<(@AgAT) ~ (P AT);

(e) Letp < q, then

p=2>q=1p~q=q->pro>p<r-qandq->r<p-r;

A PR @-r)<(p-1); (transitivity of implication)
9 Pr®g<pAq<pqand q®p<pAq=<p,q;
h) @~q)<p—-qand p->p=1, ( = is reflexive)

(i) p=gq impliesp ~q =1;

() a<sGg<p-aq

k) p & q<(p~q)<pe qlfEislinearly ordered, then < can be
replaced by an equality;

O po2ss@—-p)=>(r-s)

Mp-o>s<(s—>r)-=>(p->r);

(N p-q=p->@A);

©p-@-r<qg->@{@->7;

P p->@->1<@PRq -7
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From here on, we shall often freely use the transitivity and symmetry of "~"

without special reference to the above lemma.

Let us put
peqg=@->qA@q-Dp). 3.7)
Pea=0-0®@-p (38)
Theorem 3.1. ([8])
The class of EQ-algebras is a variety.
Definition 3.4. ([23])
Let € be an EQ-algebra. We say that it is:
e Separated if forall p,q € E,
p~q=1 implies p =q (3.9
e Spanned if it contains a bottom element 0 and
0=0~1=0 (3.10)
e Good ifforall p € E,
p=p (3.11)

e Residuated if forall p,q,r € E,

PROPAT=pPRq) iff pA((gqAT) ~q) =D (3.12)

o Lattice-ordered EQ-algebra if the underlying A-semilattice is a lattice,
e Lattice EQ-algebra (#EQ-algebra) if it is lattice-ordered in which the

following substitution axiom holds for all p,q,7r,s € E:

(v ~1)®(~p)<r~(sVq) (3.13)
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e prelinear if for all p,q € E, 1 is the unique upper bound in E of the set
{(v - ). (q~p)}

Remark 3.2. ([23])

(i) Every good EQ-algebra is obviously spanned but not vice versa.

(ii) Clearly, (3.12) can be written in a classical way such as
pRq<riff p<qg-r.

(iii) An EQ-algebra can be lattice-ordered but not necessarily an #EQ-algebra.
(iv) The prelinearity does not require the existence of a join operator in E.
However, in the following, we will illustrate that every prelinear and good
EQ-algebra is a lattice-ordered one where the join operation is definable

in terms of the meet " A " and the implication " — " operations.
Il.  Examples of EQ-algebras
In this section, we introduce a few interesting examples of EQ-algebras.
Example 3.1. ([23])
LetL = (L, A, V, ®,—,0,1) be aresiduated lattice.
(@) The algebra L' = (L, A, ®,<,1) is a separated EQ-algebra. If L is

0
linearly ordered (then & = & according to Lemma 3.1(k)), thenalso L =

0
(L, A, ®,<,1)is aseparated EQ-algebra.
(b) Let © < ® be an isotone monoidal operation on L. Thenalso L' = (L, A,

O, <, 1) is a separated EQ-algebra.
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Example 3.2. ([7])

Example of a finite non-trivial good EQ-algebra is the following: its
(semi)lattice structure is in Figure 3.2. Fuzzy equality and multiplication are

defined as in Table 3.1 and Table 3.2 respectively.

Table 3-1 Fuzzy equality of Table 3-2 Multiplication of
Example 3.2 Example 3.2
~10]|p r|is|t|lul|l R~NO[(plg|r|s|tfull
Of1|t|uls|r|p|lq]|O o(ojojofojofo(o0jo
plt|l|s|ul|r|p]|r]|p plO(Of[OfOf(O[O|O|pP
qlulql|l|t|r|r|qlq q|0[O0[O0O[O[O0[O|[0O|qg
ri{isjul|t|1l|r|r|r]|r r{0[{0[O[O[O[O|p|Tr
s|r|r|r|r|1l|u|t]s s{O[O[O(O|s|[s|s]|s
t|lplp|r|rjul|l]|s]|t t [0O[O[O(O|s|e|s]|t
ulqlclglr|t|s|1l|u u(0[{0|0|0|s|d|s|u
1|0|p|lqg|r|s|t|u]l Olplg|r|s|e|u

1
t u
s
r
p q
0

Figure 3-2 Eight elements good EQ-algebra
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Sincer ® f =p but f ® r =0, the multiplication is not commutative.
Moreover, this algebra is non-residuated since,e.g., 0 =p Q u < q; butp <«

u-q=q.
I11.  Properties of special EQ-algebras
Proposition 3.1. ([8])

The following statements are equivalent:

(&) An EQ-algebra £ is separated.
(b)p<qiff p>q=1forall p,q €E.

Remark 3.3. ([8])

According to the last proposition the implication operation " — " in a separated

EQ-algebra precisely reflects the ordering " < ".
Proposition 3.2. ([8])
Let € be a lattice-ordered EQ-algebra, then the following hold V p,q,r € E:

(@) € is EQ-algebra if and only if the following inequality holds,
p~q<(Vvr)~(@QVvr) (3.14)

b)pAgor=@->r)V(g->T).

Proposition 3.3. ([8, 23])

Let £ be an PEQ-algebra, then the following hold for all p,q,r € E:

@p-q=@Vvae ~q=0m®Ve —~q
O)pPp-NR®@-r)<(pVvg) -r.
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Lemma 3.2. ([7])

Let £ be a prelinear and separated EQ-algebra. Then for all p,q,7,s € E, it
holds that:

@preqgq=p~q;
P)p->@Ar)=@->A({p->r1).
Lemma 3.3. ([7])

Let £ be a prelinear and separated #EQ-algebra; then the following hold for
all p,q,r €E:

(a) & isdistributive; i.e.,
pA(@VT)=@AqQV(pAT)
(b) pvg)»r=@->1r)A(q@—>T).

Note that the dual of the identity in Lemma 3.3(a) (i.e,pV(gAT)=

(pVq) A (pVr) holds and the two identities are equivalent to each other (see
[28]).

Proposition 3.4. ([8]) The following statements are equivalent:

(a) An EQ-algebra E is good.
(b)1 >q=gq forallqg € E.

Lemma 3.4. ([8, 23])

Let £ be a good EQ-algebra. For all p,q,r € E, it holds that

@pr=~9~q

(b) € is separated and axiom (E7) is provable from the other EQ-axioms;
©prs-~g

dp®W@~a<prgqand (p~q)®p<pAgq;
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€ r®M@-qp=pAqand (p->q ®p=<pAgq;
f p<q-r implies pX®qg<r and gR®p <.

The following theorem presented in [8] and which shows that {—, 1}-reducts’
of good EQ-algebras are BCK-algebras (for the definitions and fundamental
properties of BCK-algebras, (see [13, 18, 26, 27]). Thus, each good EQ-
algebra can be regarded as a BCK-meet-semilattice with the additional

operations "®" and " ~ ".
Theorem 3.2. ([8])

The {A,—, 1}-reducts of good EQ-algebras are BCK-meet-semilattices,
where " — " is defined by (3.2).

Consequently, the proof of the following lemma follows from the theory of

BCK-algebras well-known results.
Lemma 3.5. ([8, 23])
Let € be a good EQ-algebra. For all p,q,r € E, it holds that

@ psq-oriffgsp-or;

b)) p>@-1r)=q->(P—-r1); (Exchange principle (EP))
©pr-@->N<@E®@->radp->>@->r)<@p) >,

(d) For all indexed families {p;} in E, provided that {p;} has supremum in E,

we have

Vi =7 = Ni(pi = 7).

3 Given an algebra (G, H) where H is the set of operations on G, and H' € H: Then the
algebra (G, H") is called the H'-reduct of (G, H).
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Theorem 3.3. ([7])

Let £ be a prelinear and good EQ-algebra € = (E, A, @,~,1), then £ isa

prelinear and good ZEQ-algebra, where the join operation is given by

pva=((-9->Pr(g->p)~p) pqeE (19

Remark 3.4.

As aresult of Theorem 3.3, all good #EQ-algebras properties are also prelinear
and good EQ-algebras properties (for the properties of good YEQ-algebras, see
[9, 23]).

Proposition 3.5. ([7])

The following holds in prelinear and good EQ-algebra € for all p,q € E:
(@ pvg=1iff p—>g=gqandq—p=p;

(b)p&q=p~qiff pVqg=1 implies p@q=pAq.

Remark 3.5.

In general, in a prelinear and good (commutative) EQ-algebra

0
peoq+p~q (see Example 3.3). But, this identity always holds for all
linearly ordered EQ-algebras. This shows that prelinearity alone does not
characterize the representable class of all good (commutative) EQ-algebras.

Example 3.3. ([7])

Let E be the bounded lattice {0, p, q, r, 1} with the partial order " < " defined
by0<p<g<1land 0 <p <r <1, whereas g and r are non-comparable

as shown in Figure 3-3.
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0
Figure 3-3 Bounded lattice {0,p, q,7, 1}

The following fuzzy equality and multiplication define a prelinear and good

0
EQ-algebra in which the identity p & q = p ~ q does not hold for all p,q €
E,since,eg.p=q~r#(@-7rQ@r->q) =rQ®q=0.

Table 3-3 Multiplication of Table 3-4 Fuzzy equality of
Example 3.3 Example 3.3
®|0|p|q|r|1 ~10 qg|lr|1
0j0(0(0]|O0]|O 0(1]0(0]|0]0
p|0]0O(Ofp|p plOf(1|p]|p|DP
q(0f(pfq|pr|q q({0fp|1l|p|aq
r0]0(0]|7r |7 r|0|p|p|1]|r
1|/0|p|q|T|1 1|10|p|q|T|1

Lemma 3.6. ([7])

A good EQ-algebra € is prelinear if and only if the following inequality holds
forall p,q,r € E:

- -rs@-p)>n-r (3.16)
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Inequality (3.16) has been chosen by Hajek and El-Zekey (see [7, 17]) as the
prelinearity axiom in his axiomatization of BL-algebras and good EQ-

algebras, respectively, obviously because it is free from operations of lattice.
Definition 3.5. ([8])

LetE = (E, A, @, ~,1) be aseparated EQ-algebra. A subset F € E is called
a prefilter of € ifforallp,q € E:

@ 1€F;

(b) If pp > q€F,thenq EF.

A prefilter F is said to be filter if for all p,q,r € E
c)fp-oqgeF,then(p®r)>(qRr)eF, r®p) > (r®q) €F.

A prefilter F is called proper if F # E. If 0 € E then a prefilter F C E is
proper iff 0 & F.

A prefilter F is said to be a prime prefilter (or simply prime) if for all p,q €

E:p—>q€Forq—->pE€EF.

It is easy to see that the singleton {1} is a filter in any separated EQ-algebra,
and it is contained in any other filter. Note that if F is prime and G is a prefilter

such that F € G; then G is a prime prefilter.
Definition 3.6. ([28])

Let P be an algebra of type F. Then thee relation 6 is acongruence on P if 6

is equivalence relation and satisfies the following compatibility property:

For each n-ary operation (or function) symbol f € F and elements p;, q; € P,

if p;6q; holds for 1 < i < nthen

(01,02 ) 0FF (g1, 420 ) )
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IV. Representable good EQ-algebras

Recall that an EQ-algebra that is a subdirect product of those with underlying
linear order is said to be representable. We assign this section to introduce the
characterization of the representable class of good EQ-algebras. This is mainly
based on study in-depth the prefilters, filters and the congruences of EQ-
algebras and other useful results, leading to this characterization.

Definition 3.7. ([28])
An algebra P is a subdirect product of an indexed family {P;};¢; of algebras if

(@) P <[l;e P; (i.e. Pis asubalgebra of [[;e; P);
(b) m;(P) = P; for all j € I, where m;:[[;c; P; > P; is a natural projection

map.

A one-to-one homomorphism h: P — [];¢; P; is called a subdirect embedding
if h(P) is a subdirect product of the family {P;};c;.

Remark 3.6.

We know that the underlying poset E of an EQ-algebra £ need not be a join-
semilattice. So, givenp,q € E, we shall writep vV g =1 to mean that the

supremum of {p, q} in E, exists and is equal to 1.
Proposition 3.7. ([7])

Let £ be good EQ-algebra. Then the following statements are equivalent, for

all p,q,7,s,u€E
(@) € is prelinear and satisfies the quasi-identity

pVq=1implies pv(s=>(s®(r->(@®r)) =1 (317)

(b) € satisfies the identity
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@P=>V(->26Q®Tr->((g—>p)®M)))=1 (3.18)
(c) & satisfies

P> us((->E®T~->(g>p)®M)) >w) >u) (3.19

(a) € satisfies

5->6Qr->(g-~rpP®M))~us(p>q)->u) -u (3.20)

We have introduced some of the auxiliary results, so we can present the main

goal as mentioned in the introduction:
Theorem 3.4. ([7])
Let € be a good EQ-algebra. The following statements are equivalent:

(@) € is representable.
(b) € satisfies (3.19), or equivalently (3.20).

Remark 3.7.

Although the representable good EQ-algebra £ can be characterized by any
of the (quasi-)identities or inequalities in Proposition 3.7; it was chosen to use
the inequality (3.19), or equivalently (3.20), to avoid using " v "; because the

underlying poset E of £ don't need to be a join-semilattice.
3.1.3 EQ,-algebras

In [8], good EQ-algebras has been enriched with a unary operation "A" (the
so-called Baaz delta) fulfilling some additional hypotheses, which is heavily
used in fuzzy logic literature. Moreover, it is shown that the characterization
theorem holds for the enriched algebra along the lines parallel to the

characterization of representable good EQ-algebras (see [7]).
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In this section, we will introduce the enriched good EQ-algebras with unary
operation "A" fulfilling some additional hypotheses as in the following

definition:
Definition 3.8. ([8])

An EQ,-algebra is an algebra & = (E, A, ®,~, A,0,1) that is a good EQ-
algebra with a bottom element O expanded by a unary operation A:E — E

fulfilling the following axioms*:

(EA1) A1 = 1;

(EA2) Aa < a;

(EA3) Aa < AAag;

(EA4) A(a ~ b) < Aa ~ Ab;

(EA5) A(a Ab) = Aa A Ab;

(EA6) If aV bandAa V Ab exist, then A(aV b) < AaV Ab;

(EA7) AaVv —Aa =1 (i.e, 1 is the unique upper bound in E of the set
{Aa, —~Aa}).

Example 3.4. ([5])

Consider E = {0,p, q,r, 1} to be a five-element chain. Then € = (E, A, V,
&®,~, A,0,1) isa linearly ordered EQ,-algebra with the fuzzy equality and
multiplication defined in Table 3-5 and Table 3-6 respectively.

The "A" operation is defined by A(1) =1 and A(x) = 0 otherwise in all
linearly ordered EQ-algebras. Obviously, this algebra is non-commutative and

non-residuated. Indeed, for example,r @ p < 0 butr £ p - 0 = p.

4 The A-axioms are from [8]
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Table 3-5 Fuzzy equality of Table 3-6 Multiplication of
Example 3.4 Example 3.4
~10|lplgq|Tr|1 | 0|plqg|r|1
0/1|p|0]|0]|O0 0/0/0{0j0O
p|p p|p|D p|0]0]0|0]|Dp
q|0|p|1iq|q q]0/0/0/q|q
r{0|p|gq r r 000 |r |7
1/0|plgq|T|1 1/0|pjg|Tr|1

Theorem 3.14. ([8])

Let £ be a good EQ,-algebra. £ is representable iff &€ satisfies (3.19), or
equivalently (3.20).

3.1.4 Prelinear EQ,-algebras

In this section we introduce a subclass of EQ ,-algebras, called prelinear EQ,4-

algebras, i.e. EQp-algebras satisfying prelinearity and the following two

inequalities, for all p,q,r € E:

EA) AP~ =(P®r)~(q®T)
EMN) AP~ =(TQp) ~(TQq)

As it has been presented in [5], the two inequalities (EA8) and (EA9) are
necessary to assure good behavior of the multiplication " @ " with respect to
the classical equality, and they are surely necessary to develop also
predicate EQ ,-logic. If we omit "A" in (EA8) and (EA9) then the resulting EQ-

algebra becomes residuated (see [8]).
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Proposition 3.8. ([5])

The following properties are equivalent in each EQ, -algebra &:

(@) & is prelinear;

(b) & satisfies the following identity, forall p,q € E
Ap-q)vA(g-p) =1 (3.21)
(c) & satisfies the following inequality, for all p,q,r € E

Ap-q-r)<@@-p) 1)1 (3.22)

Proposition 3.9. ([5])

The following properties are equivalent in each EQ, -algebra &:

(a) & satisfies the following inequalities, for all p,q,r € E

Ap-p<(@P®r)->(qR1)

(3.23)
Ap- =0 ®p)->TQq)
(b) & satisfies the following inequalities, for all p,q,r € E

Aq<sr-(@®r)andAqg<r-> (1 Qq) (3.24)

(c) & satisfies the following inequality, for all p,q,7,s € E
A< (s> Q- (q®1))) (3.25)

Furthermore, if we suppose that £ is prelinear, then any one of the above

inequalities (hence all) is equivalent to both (EA8) and (EA9).
Definition 3.9. ([5])

A prelinear EQ,-algebras is an algebra € = (E, A, ®,~, A,0,1) that is a

good non-commutative and bounded EQ-algebra with a bottom element 0 and
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a top element1 expanded by a unary operation A:E — E fulfilling the

following axioms:

(PAL) A1 =1;

(PA2) Ap < AAp;

(PA3) A(p - q) < Ap - Ag;

(PA4) A(p > q) 1)< (A(g—>p) > 1) T

(PAS) Ag< (s> (s® (r = (g ®1))));

(PA6) Ap Vv =Ap =1 (i.e., 1is the unique upper bound in E of the set
{Aa, ~Aa}).

Corollary 3.1. ([5])

Prelinear EQ,-algebras are exactly EQ,-algebra satisfying prelinearity, (EA8)
and (EA9).

Theorem 3.5. ([5]) (Representation theorem).

Each prelinear EQ,-algebra is representable.
3.2 Basic EQ-Logic

In this section, we present a propositional EQ-logic introduced by M. Dyba
and V. Novak [6] which is called basic. This logic is the simplest logic based
on a special algebra of truth values called good EQ-algebra introduced by V.

Novak in [23] as the algebraic semantics.

3.2.1 Syntax of Basic EQ-Logic

Definition 3.10. ([6]) (Basic EQ-Logic language)
The basic EQ-logic language consists of propositional variables p, g, ...,

binary connectives A, & = and a truth (logical) constant T. Implication is a

derived connective defined by:
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P=Q:=P=(PAQ) (3.26)

Let T be a language of basic EQ-logic and F;- stands for the set of all formulas

for the given language is 7.

3.2.2 Logical Axioms and Inference Rules

The following formulae are axioms of the Basic EQ-logic which are

introduced in [6]:

(Al) (p=T)=P
(A2) PAQ=QAP
(A3) (POQ)OR =PO(QOR) whereD € {&, A}

(A4 PAP=P
(A5) (T&P)=P
(A6) (POT) =P where D € {&, A}

(A7) ((PAQ)&R) = (Q&R)

(A8) (R&(PAQ)) = (R&Q)

(A9) (PAQ=R)&S=P)=>(R=(SAQ))
ALD)(P=Q)&(R=8S=((P=R)=(=0Q)
(All)) (P=(Q@AR)=>(P=0)

The Inference rules of Basic EQ-logic are Leibniz rule (Leib) and Equanimity
rule (EA).

A theory T over Basic EQ-logic is any subset T < F; of formulas called
special axioms (also non-logical axioms). T - A denotes the sentence “P is

provable in T” or “T proves P”.
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3.2.3 Fundamental Properties of Basic EQ-logic

The following lemma illustrate the fundamental properties of the basic EQ-

logic that have been presented in [6].
Lemma 3.7. ([6])

The following properties hold in the basic EQ-logic:

@PrFHP=T,and P=TFP (Rule (T1),(T2) respectively)
(b)) PAS=RP=QFHQAS=R (Rule (C))
c)(P=S)=RP=Q+H(Q@=S)=R (Rule (D))
(d) P&RS=R,P=0Q + Q&S =R (Rule (E))
(e) S&P=R,P=Q + S&Q =R (Rule (F))

3.2.4 Semantics of Basic EQ-Logic

Definition 3.11. ([6])

Atruth evaluation e: Fr — E is defined as follows: if p € F isapropositional

variable, then e(p) € E, Furthermore,

e(T) =1;

e(PAQ) =e(P)Ae(Q);
e(P&Q) = e(P) ® e(Q);
e(P=Q) =e(P) ~e(Q).

for all formulas P,Q € F;. A formula P € F; is a tautology if e(P) = 1 for
each truth evaluation e: F — E.
Notice that semantics of Basic EQ-logic is formed by means of good, non-

commutative EQ-algebras.
Lemma 3.8. ([6])

All axioms of the basic EQ-logic are tautologies.
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Lemma 3.9. ([6])

The inference rules of basic EQ-logic are sound in the following sense:
Lete: Fr — E be a truth evaluation where E is a support of a good non-

commutative EQ-algebra:

(@ If e(P) =1and e(P = Q) = 1then e(Q) = 1.
(b) If e(Q = R) = 1then e(P[p:= Q] = P[p:= R]) = 1 forany

formula P.

The following is standard procedure due to Lindenbaum and Tarski®, we now

study and introduce the completeness of the basic EQ-logic [6].
Definition 3.12. ([6])
Put
P~Qiff FP=0Q, P,Q € Fy (3.27)

The relation " =" is an equivalence on Fr. Let us denote by [P] an

equivalence class of P and put
E = {[P]| P € F;} where [P] ={Q| FP = Q.
Finally, we define
1=[T]
[PIA[Q]=[PAQ]
[P]1® [Q] = [P&Q]
[P] ~[Q] =[P = Q]

5 The Lindenbaum-Tarski algebra is the quotient algebra obtained by factoring the algebra
of formulas by the congruence relation.
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Lemma 3.10. ([6])

The algebra € =(E, A, ®,~,1) is agood non commutative EQ-algebra.

Theorem 3.6. ([6]) (Soundness)
The basic EQ-logic is sound.

Theorem 3.7. ([6]) (Completeness)
The following is equivalent for every formula P:

(@ P
(b) e(P) = 1 for every good non-commutative EQ-algebra £ and a truth

evaluation e: Fr = E.

3.3 Prelinear EQ,-Logic

In this section, we introduce a complete propositional calculus for
prelinear EQ,-algebras which is developed in [5]. It is called prelinear EQ,-

logic.
3.3.1 Syntax of Prelinear EQ,-Logic

The language of prelinear EQ ,-logic is the same as that of the basic EQ-logic

extended by the unary connective " A" and the truth constant" L ". Let F;
denote the set of all formulas for the given language 7. This logic is defined
on the basis of a prelinear EQ,-algebra of truth values. Further definable

connectives are
PVQ=((P=2Q)=>QA({(Q=P)>P) (3.28)

P:=P =1 (3.29)
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3.3.2 Logical Axioms and Inference Rules

The logical axioms of the prelinear EQ,-logic are the logical axioms (Al),

(A2),..., (Al11) of the basic EQ-logic plus the following ones:

(A12) (PA L) =1

(AAO) AT

(AA1) AP = AAP

(AA2) A(P = Q) = (AP = AQ)

(AA3) (A(P=>Q)>R)=((A(Q=P)=>R)>R)
(AA4) (AP = —AP) = —AP

(AA5) (=AP = AP) = AP

(AA6) AQ = (T = (T&(R = (Q&R))))

Inference rules of the prelinear EQ, -logic are the same as that of the basic EQ-

logic, i.e. they are equanimity rule (EA) and Leibniz rule (Leib).

The theorems and inferences of the basic EQ-logic remain valid in extension
of the prelinear EQ -logic, since the prelinear EQ, -logic is an extension of the

basic EQ-logic.
3.3.3 Semantics of Prelinear EQ,-Logic

It's been explained that the semantical domain for the prelinear EQ,-logic is
the class of all prelinear EQ,-algebras. In this section, we introduce the general
and chain completeness of prelinear EQ,-logic for the variety of prelinear
EQx-algebras which have been established in [5], i.e. completeness of the

whole variety and the class of chains of the variety, respectively.
Definition 3.13. ([5])

Interpretation of the prelinear EQ,-logic is a tuple R = (&€, e) in which € =

(E, A, Q, ~, A,0,1) is a prelinear EQ,-algebra and a function e: Fr — E,
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called the truth evaluation of the interpretation that satisfies the following

identities for all formulas P,Q € Fs:

e(T) =1, e(l)=0,
e(PAQ) =e(P)ne(Q),
e(P&Q) = e(P) @ e(Q),
e(P=Q) =e(P) ~e(Q),
e(AP) = Ae(P).

If e(P) = 1inan interpretation R then P is said to be valid (or, true) in R,

and we write R = P.

Let T be atheory and R = (&, e) be an interpretation, then
If RePforallP €T, wewriteR =T,

and we say that R is a £&-model of T.

If for every interpretation R such that R =T we have R = P, then we
writeT = P. If R = P for all the interpretations R, P is called universally

valid (or, a tautology), and we write = P.

The following is standard procedure due to Lindenbaum and Tarski, we now

study and introduce the completeness of the prelinear EQ,-logic.

Let T be a theory over the prelinear EQ,-logic. Then consider the relation

(3.27). We explain that (3.27) is an equivalence relation on Fi.

Let p: Fr —» Fr/=~ be the quotient map onto the set of all equivalence classes
|P| ={Q| T +P = Q}. The Leibniz rule (Leib) guarantees that the logical
connectives possess the substitution property for " = ". In consequence, the

following operations are well-defined on the set E = {|P|| P € Fy}:
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|PI Ar|Ql=q(PAQ),
Pl @7 |Q] = q(P&Q),
|Pl~7|Q] = q(P = Q),
Ar|P| = q(AP).

The partial order < is also well-defined on F /=~ by

|P| < |Q|iff [P|A+ Q| =|P|iff TF(PAQ) =P

(3.30)
iff THP = Q

LetEr = (E, Ar, Qp,~7,A7,07,1;) be the Lindenbaum algebra of the
theory T,where 1+ = p(T), 0 = p(L). Er isagood non-commutative EQ-
algebra (see also Lemma 3.10) and the top element 1, is exactly the
equivalence class {P € Fr| T \- P}. It is bounded (by Axiom (Al12)) and its
partial order is its lattice order. Hence, by Axioms (AAQ)-(AA6), £, is a
prelinear EQ,-algebra. Moreover, the quotient map is a truth evaluation. From
these arguments with the representation theorem (Theorem 3.5), we conclude

the following theorem.
Theorem 3.8. ([5]) (Completeness)

The prelinear EQ,-logic is generally complete and chain complete for the
variety of prelinear EQ,-algebras. Specifically, for every formula P € F; and

for every theory T over the prelinear EQ,-logic, the following are equivalent:

@ T+ P.

(b) For each prelinear EQ,-algebra € and each E-model R of T, R = P.

(c) For each linearly ordered EQ,-algebra € and each &-model R of TR E
P.
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Theorem 3.9. ([5]) (Deduction theorem)
For each theory T, formula P and arbitrary formula Q it holds that:

TU{P}FQiff T + AP = Q.
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Chapter 4
PEQ}-Algebras

In this chapter, we introduce and study a class of separated lattice EQ-algebras
that may be represented as subalgebras of products of linearly ordered ones.
Such algebras are called representable. Namely, we enrich separated lattice
EQ-algebras with a unary operation (the so called Baaz delta), fulfilling some
additional assumptions. The resulting algebras are called #EQ%-algebras. One
of the main results of this chapter is to characterize the class of representable
¢EQj-algebras. We also supply a number of useful results, leading to this

characterization.

4.1 Definition and Fundamental Properties

Definition 4.1.

A ¢EQ,-algebraisan algebra &, = (E, A, V, ®,~, A, 0,1) that is separated
PEQ-algebra with a bottom element 0 expanded by a unary operation A: E —

E fulfilling the following axioms:

(EsAL) A1 =1;

(EsA2) Ap < p;

(EsA3) Ap < AAp;

(EsAd) A(p ~ q) < Ap ~ Ag;

(EsA5) A(p Aq) = Ap AAg;

(EsA6) A(pVvq) <ApVAg;

(EsA7) Ap Vv —=Ap =1,

(EsA8) Ap~q)=(p®1r)~(q®7);
(Esd9) Ap~ = Qp)~ (T Q.
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Remark 4.1.

The axioms (EgAl), (EsA2),...,(EsA7) are from [8] (see Definition 3.8) and the
two inequalities (E;A8) and (EsA9) are from [5] (see section 3.1.4) . They are
necessary to assure good behavior of the multiplication " @ " with respect to
the crisp equality. If we omit"A" in (E;A8) and (EA9) then the resulting EQ-

algebra becomes residuated.
Lemma 4.1.
Let £, be a PEQ,-algebra. For all p,q,r € E, it holds that:

(@) If p < gq,then Ap < Agq;

(b) A(p — q) < Ap - Ag;

() A(pVvq) =ApV Ag;

(d) AAp = Ap;

@©p®Ap—-q <q AMp-q)Qp=<gq;

Hp@® A~ <q Mp~qp=gq;

(9) A(p ~ 1) = Ap, and A(1 - p) = Ap;
hAg<r->(q®nr),andAg<7 - (r® q);

() Ap = Ap ® Ap;

() Ap < Aq - Ariff Ap Q@ Aq < Ar and Aq ® Ap < Ar;
(k) If &, is prelinear, then A(p - q) VA(q = p) =1,
AP =@EMN->(@n,andA(p->q) < (T ®p) > (T Q).

Proof.
(@): Assumep < q (p A q = p). Hence, by (E;A5), we have
A(pAq) =Ap AAq = Ap; thatis Ap < Aq.

(b): From (E;A4) and (EgA5), we get
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Ap->q)=A((pAq) ~p) <A(pAq) ~Aq = (ApAAq) ~ Aq
= Ap - Aq.

(c): From item (a) (because p,q < p V q), we can have, Ap,Aq < A(p V q).
Therefore, Ap v Aq < A(p V q). Hence, by this and (E;A6), the result holds.

(d): Direct from (E;A2) with item (a), we obtain AAp < Ap. Hence, by this and
(E<A3), the result holds.

(e): From (E;A2), Lemma 3.1(g) and the order properties of " — ", we get
Ap-)=<sp-9=@Ap~-q)~aq,
“Ap-q) =Ap->q) 2 0<Ap->q) =g @PRAP~-q)~q
(since 0 < q). Thus, by (EgA7) and Proposition 3.1,
P®A(—q))—>q=1thatis(p ® A(p » q)) < q.
Similarly, A(p > q) ® p < q.
(F): Directly from item (e) by Lemma 3.1(h).
(9): By item (d), (EsA4) and item (f), we get
Ap~1)=AMA(p ~1) =1Q AA(1 ~ p) < A1 ® A(A1 ~ Ap) < Ap.
On the other hand, Ap < A(p ~ 1) by item (a) (sincep < (p ~ 1)).
In particular, A(1 - p) =A((1Ap) ~1)=A(p ~ 1) = Ap.
(h): From item (g), (EsA8) and Lemma 3.1(h), we get

Aq=01~q)=AQ®N~@AN =11 ->@®r)
=r—->(q®n).
Similarly, Ag <r = (r ® q).
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(i): By item (h), item (d) and order properties of " — ", we obtain
Ap = AAp < Ap - (Ap @ Ap) and
-Ap = Ap - 0 < Ap = (Ap ® Ap)

(since 0 < (Ap ® Ap)). Thus, by (EsA7) and Proposition 3.1, Ap =» (Ap ®
Ap) = 1; that isAp < (Ap @ Ap). On the other hand, (Ap ® Ap) < Ap by
Lemma 3.1(g).

(4): Assume Ap < Aq — Ar, then by Lemma 3.1(g) and the order properties

of n_) ,
Ap < Aq - Ar < (Ap Q Aq) — Ar and
—-Ap =Ap - 0 < Ap - Ar < (Ap Q Aq) — Ar.

Thus, by (EgA7), and Proposition 3.1, (Ap @ Aq) —» Ar = 1; that is (Ap ®
Aq) < Ar. Similarly, (Ag ® Ap) < Ar. Conversely, assume (Ap Q@ Aq) <

Ar. Hence, by item (d) and item (h), we obtain
Ap = AAp < Aq - (Ap @ Aq) < Ap — Ar.
Similarly, for (Aq ® Ap) < Ar.
(K): By (EgA1l), the prelinearity and item (c), we get
1=M=AMp->9V@->p)=2Ap~->qVAq~-p).
(I): Using (EsA8) and the order properties of " — ", we have

Ap-q) =8N ~P)=((PA) Q1) ~(PRT)
S@E®r->((pAq) Q1)
<(@PAr) - (@&).

Similarly, Ap > ) < (r®p) » (r ® q). u
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Theorem 4.1.
The class of £EQ;-algebras is a variety.
Proof.

Just note that the separateness axiom (i.e.,p < qiffp > g=1forallp,q €
E)isequivalent to the identity p @ A(p — q) < g, this can be seen as follows:
Assumep @ A(p —» q) < gandletp - g =1, then

p=p@®1=pR®A1=pQA(p—-q) <q.

Hence, by Lemma 4.1(e) the result holds. Note thatwe havep < q iffp Aq =
p. Hence, all the other properties stated in Definition 3.3 and Definition 4.1

can be expressed using equations (see Theorem 3.1). [ ]

4.2 Filters in #EQ}-algebras

Definition 4.2.

Let Eo=(E, A, V, ®, ~, A,0,1) be a £EQ;-algebra. A subsetF C E is
called afilter of €, if forall p,q € E:

(@ 1€F.
(b) ifp,p > q€F,thenqg €F.
(c) ifpeF,thenAp € F.

Remark 4.2.

A (prime) filer F on afEQj-algebra&y = (E, A, V, ®, ~, 4,0,1) is a
(prime) prefilter (in the sense of given in [8]) on its separated EQ-algebra € =
(E, A, Q, ~,1) satisfying (c) (see Definition 3.5). So all the properties of
(prime) prefilters on it separated EQ-algebra (see [7, 8]) are also properties of

(prime) filters on a #EQ;-algebra, including the following result:
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Lemma 4.2.

Let F be a filter of a /EQ}-algebra €. For all p, q € E it holds that:

(@ Ifpe Fandp < qthenqg € F;
(b) f p,p ~q € Fthenq € F,
(c) fp,ge FthenpAqg EF.

Proof.

(@) From Lemma 3.1(e), it follows that p — q = 1. The properties (a) and (b)
in Definition 3.5 of a prefilter imply thatp = q € F andthenq € F.

(b) Due to Lemma 3.1(h), it holds that p ~ ¢ < p — q. From item (a), it then
follows thatp — q € F, so the property (b) in Definition 3.5 of a prefilter
impliesthatq € F.

(c) From Lemma 3.1(j) and Lemma 3.1(n), it follows thatq < p - q=p -
p A q. From item (a), it then follows that p — p A q and hence, by the property
(b) in Definition 3.5 of a prefilter, p A q € F. ]

Lemma 4.3.

Let F be a filter of a YEQ}-algebra €,. For all p,q,7,p’,q" € E such thatp ~
q € Fandp' ~ q' € F, it holds that

@ Ifp>qgeF then(p®r)>(@Rr)EFand(r®p) > (rQ®q) EF
(b) If p, g € F then p @ q E F;

) P®p)~@®q)eFand(p' ®p) ~(q' ®q) EF;

(d) (Ap ~Aq) € F.
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Proof.

(@): Assumep — q € F. Since F is a filter, then A(p — q) € F. Hence, by

Lemma 4.1(1) and Lemma 4.2(a), we get
Ap->q)=<(@®r)->(q®r) EF.
Similarly, r Q@ p) > (r® q) € F.

(b): From Lemma 3.1(j) and Lemma 4.2(a), it follows thatq <1 — q € F.

From item (a), it then follows that
PR®N->PRq=p—>(PXq)EF.
Hence, by Definition 4.2 of a filter, p @ q € F.

(c): By Definition 4.2, A(p ~ q) and A(p’ ~ q") € F. Thus, by (E;A8) and
(E<A9), we get
Alp ~) @A ~q") <
<((P®pP)~@®pN®((q®p)~@®q")
<@P®pr)~@®q)

Hence, by Lemma 4.2(a) and item (b), the result holds. Similarly, (p’ ® p) ~
(@ ®q) €EF.

(d): By Definition 4.2 and Lemma 4.2(a)
A(p ~ q) € F implies Ap ~ Aq € F (since A(p ~ q) < Ap ~ Aq). |
Lemma 4.4.

Let £, be a #EQ;-algebra. Given a filter F € E, the following relation on &,

is a congruence relation:

p=rpqiff ~q€F (4.2
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Proof.

Indeed, Definition 3.3(E3), Lemma 3.1(a) and Lemma 3.1(b) guarantee that
~ IS an equivalence relation. As an immediate consequence of Lemma 4.3,

all the operations of £, are compatible with the relation given by (4.1); that is

p=rpqand p' = q" imply(p Ap') =r (qAq"),(pVDP') =r (qVq'),
@~p)=r(@~q), P®P) =r (q®q’),and (Ap = Aq).

Then, ~ is a congruence relation. ]

Let £, be a £EQj-algebra. Forp € E, we denote its equivalence class with
respect to ~r by [p]r and by E/F the quotient set associated with ~.

Furthermore, we define the factor algebra
gA/F = <E/F; /\F; VF; ®F: ~FﬂAF' OF' 1F>
in the standard way as follows:

E/F = {[plr| p € E}, and the binary operations on E /F are defined by

The top and the bottom elements are1; = [1], ={q€E|q~1€F} =
F), 0 = [0]r = 0, respectively.

Also, we can define a binary relation " < " on E /F as follows:
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[plr <r lqlF iff [plr Ap lqlr = [plr ff DAG =p D (4.2)
iff p>q€F
Then, we have the following result.
Theorem 4.2.

Let F be a filter of a £EQ}-algebra £,. The factor algebra €5 /F = (E/F, Ap,
Ve, Qp, ~r Ar, 0F, 15) is a fEQ}-algebra, and the mapping f:E — E/F
defined by f(p) = [p]r is a homomorphism of €,.

Proof.

We first need to verify that £,/F fulfills axioms (E1)-(E7) (see Definition
3.3). Using the definition of the factor algebra and its operations above with
the axioms (E1)-(E7), we get

Axioms (E1) and (E2) are obvious. We demonstrate for instance the

isotonicity of " @ ". Let [plr <r [q]r and [r] € E/F. Then p - q € F and
therefore,p @ r > q @ r € F. Hence, [plr ®r [T]lr <r [q]lr QF [T]F.

(E3): By definition [p] ~f [plr = [p ~ plr = [1]F.
(E4): Axiom (E4) in &, statesthat (pAq) ~1) R (s ~p) <r ~ (sAq),

and then
(A~ QB ~p) > T ~(sAq) =1€F.
Hence, [((pAq) ~ 1) ® (s ~ p)] <r [r ~ (s A q)] or equivalently,

(e Ar gD ~¢ [rD ®F (Is] ~F [PD) < [r] ~¢ (Is] Ar [qD.

Axioms (E5)-(E7) can be shown in a similar way.
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Separateness: let [plr ~r [qlr = [1]g, then [p ~ q]r = [1]F;thatis p ~ q €
F. This means that p = q and hence [p] = [q].

It is sufficient to verify that the other axioms of £EQ;-algebra hold also in the

factor algebra £, /F:

Using the axioms (EgA1)-( EgA10), we get

(EsAL): Ap[1]p = [A1]F = [1]F.
(EsA2): If Ap < p,then Ap - p =1 € F. Hence, [Aplr < [p]F; thatis

Ar[plr <k [PlF-
(EsA3): If Ap < AAp,then Ap - AAp =1 € F. Hence, [Aplr <p [AAp]r
thatis; Ar[plr <r ArAr[plr.
(EsA4): If A(p ~q) < Ap ~ Aq,then A(p ~q) » (Ap ~Aq) =1 EF.
Hence, [A(p ~ @)]r <r [Ap ~ Aq]F; that is

Ar([plr ~F [q]F) <r Arlplr ~F Arlqlr.
(EsA5):

Ar([plF Ar [qlF) = [A(p A @]r = [Ap AAqlr = Ap[plr Ar Arlqlr-
(EsAB): If A(pvq) <ApVAq,then A(pvq) >ApVAg=1€F.
Hence, [A(p V @)]r <r [Ap V Aq]F; that is

Ar([plF Vr [qlF) <F Arlplr Ve ArlqlF.

(EsAT): Ap[plr Vi —Ap[plr = [Ap vV —Ap]r = [1]F = F.
Esp8): If Ap~q) < (p®r)~(q®r), then A(p~q) > (p Q1) ~
(q®7r)=1€F.Hence [Alp ~ Plr <r [(p Q1) ~ (g @ 1)]r; that s
Ap([plr ~r [9]F) <r (Iplr ®F [r]r) ~F ([9]F ®F [r]F).
Similarly, (EA9).
(EsA10): (Iplr =r [alp) Ve (gl —=F [P1F) = [(p = @) vV (¢ = P)]F
= [1]F
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Finally, f is a homomorphism by definition:f(p (1 q) = [p [ qlr =
fel @) =I[pEqlr =[plr Ur lqlr = f() &F f(@)

where [ € {A, v, ®, ~}and f(Ap) = [Aplr = Arlp]r = Arf (D). u

The collection of all filters of a #EQ;-algebra E,will be denoted by F(E,).

4.3 Representable #EQj-algebras

For a nonempty subset X of a PEQj-algebra £,, the smallest filter of £, which
contains X, i.e. N{F € F(&,): X € F} is said to be a filter of £, generated
by X and will be denoted by (X). It is clear that if X; € X,, then (X;) S (X,).
If X =Y U {p}, we will write (Y, p) for (X). The set of non-negative integers

will be denoted by w, we define
p-"q=qp-""g=p-(@-" 9.
If p =1, p "1 qisdenoted by g"+1.
The following theorem gives a characterization of a filter generated by a set.
Theorem 4.3.

Let X be a nonempty subset of a YEQ}-algebra £,. Then

(X)={p€E:Aq; » (Aqz » - (Aq, 2 D) ..)) =1,

for some q; € X,n € w}.
Proof.

PutM ={p € E: Aq, = (Aq; —...(Aq, = p)...)) = 1,forsome q; €

X,n € w}. Now, we show that M is a filter of £,. Since all q; € M,q; < 1,
therefore by Lemma 4.1(a) and (EsA1) Aq; <A1 =150Aq; » 1 =1, i.e,
1 € M. Now, letp,p - q € M, then there exist q;,q2,.--, 91, 91,92, - +» Gm €
X such that
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Ag, = (Aqy —...(Aq, — p)...)) =1and
Ag; = (Bqz =...(Aq = (p > @))-..)) =1
Hence, by Lemma 3.1(1), we have:

p—q=<(Ag,—>p)—- (Agy— q)
< (Aqn-1 ~ (Aqn = D)) = (Aqn-1 ~ (Aqn — q)).

By continuing this way, we get that

p-q<
< (Aqy = (Aqz »...(Aqy = p)...)) = (Aq1 = (Aqz —... (Agn — q)...)).

Then, by order properties of " — ", Lemma 4.1(a) and (EAl), we conclude
that

p—->q=<1-(Aq; > (Aqz > - (Aqn — q) ...))
< Aqy = (Aq; = (Aqz —...(Aqy = @)...)),

where g, € M. Hence,
Agm = (p = @) < Bqp = Bqo = (A1 = (Bgz2 = ... (Agn = q)...))).
We can obtain by continuing

Aq; - (Aq; —...(Aq » (P> q))...) < Aq; » (Aqy — ... (Aqy, —
(Aqo = (Agq1 = (Aqy ... (Agn = q)---)))---)-

Then,

Aq; = (Aqy —...(Aqm = (Aqe — (Aq; = (Aqy —...(Agy = q)...)))...)
=1,

And so g € M. Finally, we will prove that Ap € M whenever p € M. Assume
that p € M, then
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(Aqy = (Agy = ...(Aq = p)...)) =1 forsomeqq,qs,...,qn € X.
By (EAL), Lemma 4.1(b), Lemma 4.1(d), and the order properties of "—",

1=A1=A(Aq; - (Aqz — - (Aqn > ) -..))
< (AAgq, — (AAq, — -+ (AAg, — Ap) ...))
= (Aqy, = (Aq; »...(Aq - Ap)...)).

Hence, Ap € M. Therefore, M is a filterof E5. Let F € F(E,),X S Fandp €
M, then

(Aqq = (Aqy —...(Ag, = p)...)) =1,forsomeq; € Xandn € w.
Since 1,Aqy,Aq,,...,Aq, € F,we implyp € F. Thus, M € F. Therefore, M

is the smallest filter of £, containing X. i.e. M = (X). ]
Theorem 4.4.
Let F be a filter of a #EQ;-algebra £,. Then
(F,p) ={q €E:Ap > q € F}
Proof.

Let g € (F,p), then by Theorem 4.3 and Lemma 3.1(0) for some
flfer---:fn € F:n;kl,kz Ew

Ay = (Afy > ... (M > (Bp 5% §*2)..) = 1.

Since F is a filter and 1 € F, then Ap —*1 §*2 € F. Hence, by Lemma 3.1
(p) and Lemma 4.1(i) we get,

Ap->Fghe<(Ap® ..QAp) > Gs=Ap—> G eF

for some k5 € w. Since F is a filter, then by Lemma 4.1(b), Lemma 4.1(d)

and Lemma 4.1(g) and Lemma 4.2(a), we obtain
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A(Ap - G%3) < AAp > AG*s =Ap > Aq<Ap > qEF
Thus, q € {q € E:Af - (Ap — q) = 1 for some f € F}.

Conversely, since (F,p) isafilterand p € (F,p), then Ap € (F,p). If Ap —
q € F,then Ap - q € (F,p),and hence, q € (F, p). ]

By the following theorem, we determine filters generated by join of two

elements.
Theorem 4.5.
Let F be a filter of a /EQ}-algebra €4, and p,q € E. Then
pV q € F implies (F,p) N (F,q) = F;
Proof.

It is clear that F < (F,p) N (F,q). Letp v q € F, then by Definition 4.2 and
Lemma4.1(c), A(p V q) = Ap Vv Aq € F.Now let r € (F,p) N (F, q), then by
Theorem 4.4, we get Ap - r € F and Aq — r € F for some f € F. Hence,
by Lemma 4.3(b), we have (Ap - r) ® (Aq — r) € F. By this, Proposition
3.3(b) and Lemma 4.2(a), we have

Ap->1r)®LAq—>1r)<(ApVAq) >TEF.
Therefore, r € F. Thus, (F,p) N (F,q) € F. ]

We extend to £EQj}-algebra the following result, proved by El-Zekey in [7].

The proof is completely the same as El-Zekey's proof.
Proposition 4.1.

Let F be a filter of a #EQ}-algebra £,. Then the following properties are

equivalent:
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(@) F is prime.
(b) E/F isachain, i.e., is linearly (totally) ordered by <p.
Proof. ([7])
(@) © (b): If F is prime, then from (4.2) we get

(p—q) €For(q—p)e€Fiff [p]lr <p[q]ror [q]r <r [P]F;
thatis E/F is achain. ]
Theorem 4.6.

Let £, be a PEQ}-algebraand let p € E,p # 1. Then, there is a prime filter F

on &, not containing p.
Proof.

There are filters not containing p, e.g. F, = {1}. We shall show that if F is any
filter not containing p and x,y € E such that (x > y) € F and (y - x) ¢ F,
then there is a filter F* 2 F not containing p but containing either (x — y) €
F or (y - x) € F. Note that the least filter F' containing F as a subsetand u €
E asanelementis F' = {v € E: Au —» v € F}. Indeed, F' is obviously a filter

by Theorem 4.4 equivalently F' = (F,u).

Thus, assume (x - y) € F,(y = x) € F and let F;, F, be the smallest filters
containing F as a subset and (x — y), (y = x) respectively as an element. We

claimthatp € F, orp & F,. Assume the contrary; then,
Ax—>y)-p€eFand A(y»>x) > p€EF.
Hence, by Lemma 4.3(b), we have
Ax->y)->p) @AY —»>x)>p)EF.

By this, Proposition 3.3(b) and Lemma 4.2(a), we have
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Dx->y)->p)®UYy—-x)»p)<(Ax->y)VAYy->x))—p
=1->pEF.

Thus, p € F (since 1 € F) a contradiction. Hencep &€ F; orp & F,.

Now, if &, is countable (which will be our case in the proof of completeness),
then we may arrange all pairs (x,y) from E? into a sequence
{(x,,, y)|n natural}, put F, = {1} and having constructed E, suchthat p ¢ E,
we take F,,; 2 E, such that p ¢ F according to our construction; if possible
we take F,,,; such that (x,, —» y,) € F,,,4, if not, we take that with (y,, —»

X,) € F,.1. Our desired prime filter is the union
Us
n

If £, is uncountable, then one has to use the axiom of choice and work

similarly with a transfinite sequence of filters. ]
Theorem 4.7. (Representation theorem)

Let £, be prelinear #EQ}-algebra. Then, each &, is subdirectly embeddable

into a product of linearly ordered £EQj-algebras; i.e., £, is representable.
Proof.

Let 2 be the set of all prime filters of £,. For F € 2. Thus, by Theorem 4.2,
the natural homomorphism h:Ex = [[rep Ea/=F defined by h(p) =
([plF)rep is a subdirect embedding of £, into a direct product of {Ex/
~p:F € P}. It remains to show that it is one-one. Ifp,q € Fandp # q
thenp £ q or g £ p. Without loss of generality, then (p = q) # 1 in E. By
Theorem 4.6, let F be a prime filter on E not containing (p — q); then

inEa/F,[plr £ [qlF, hence [plr # [q]r and therefore h(p) # h(q). Using
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Proposition 4.1 and Theorem 4.2, €5/~ is linearly ordered £EQ;-algebra for

each F € P, which completes the proofs. ]



64

Chapter 5
PEQ}-Logic
In this chapter, we develop many-valued (fuzzy) logic in which the basic
connective is fuzzy equality and the implication is derived from the latter.
Precisely, we formulate the #EQ3-logic which is rich enough to enjoy the
completeness property and its set of truth values is formed by #EQ3}-algebras
in which the fuzzy equality is one of the basic operations. The implication
operation (as well as the corresponding connective) is derived. We in detail
introduce syntax and semantics of the #EQ}-logic and prove various theorems
characterizing its properties including completeness. Formal proofs in this

chapter proceed mostly in an equational style.
5.1 PEQj-logic: syntax
Definition 5.1.

The language of EQj-logic is the language of the basic logic expanded by the
binary connective Vv, the unary connective A and a false (logical) constant L.
Implication is a derived connective defined by (3.26). Further definable

connective is (3.29). The truth constant T is defined by:

T=11=1 (5.1)

Let T be a language of ZEQj-logic and the algebra of truth values is formed
by PEQj-algebra €, = (E, A, V, ®,~, A,0,1).

The set of all formulas for the given language 7" is denoted by F;.

5.1.1 Logical Axioms and Inference Rules

The logical axioms of the #EQj-logic consist of the logical axioms (A2),
(A3),..., (Al11) of the basic EQ-logic plus the following ones:
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(Ajdl) PVP=P

(As2) (PVQ)VR=PV(QVR)

(A3) PO(PEQ)=P where {O, @} = {A V},O0+0O
(As4) (PVQ)=R)&(S=P)=>(R=(QVYS)))
(As5) P=>(T=P)

(As6) PAL=1

(A7) AT

(A;8) AP =APAP

(A9) AAP = AP

(As10) A(P = Q) = (AP = AQ)

(A1) A(P=>Q)VAQ=>P)

(Ag12) A(P = Q) = ((R&P)&S) = (R&(Q&S))
(Agl3) APV - AP

Remark 5.1.

Our aim is developing a more general fuzzy EQ-logic whose semantics based
on separateness (need not to be good) called #EQj-algebras. Consequently,
we formulate the axiom (A¢5) as a relaxation from axiom (Al) (goodness

axiom) of basic EQ-logic.

Inference rules of #EQj-logic are Leibniz rule (Leib) and the Modus Ponens
rule (MP):

P, P=4Q

0 (MP)

5.1.2 Fundamental Properties of #EQj-logic

The following lemmas illustrate the main properties of the #EQj-logic.
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Lemmab5.1.

@ PP=QrQ (Equinimity (EA))
b)P-T=P; (Rule (T))
(c) P+ AP; (Necessitation rule (N)
(dT=PFrP.

Proof.

(a)
P=0Q (Assumption)
& ((Leib); "C — part™: (P A p))
PAP=PAQ
& ((Leib) + (PAP =P);"C—part:(p=PAQ))
P=PAQ

Thatis - P = Q. Hence, by (MP) with the assumption P, we get Q.

(b) Direct from the assumption and (A 5) by (MP).

(©)
T=P (Assumption + Item (b))
& ((Leib); "C — part": (Ap))
AT = AP

Thus, by (EA) with (A7), we get the result.

(d)
T=P (Assumption)
& ((Leib); "C — part": (Ap))
AT = AP
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Thus, by (EA) with (A7), we get + AP. Hence, by (MP) with (A8) the result

holds. ]
Remark 5.2.

The following properties of the basic EQ-logic were proved by the inference
rules of #EQj-logic, Equanimity and the logical axioms (A2), (A3),..., (A11)
without using goodness axiom (Al) (see [6]). So, they remain valid in the
YEQ}-logic. We derive further properties in the #EQj3-logic that we will use

for establishing its completeness for the semantical domain of #EQj-algebras.
Lemma 5.2. ([6])

@P=QrQ=r;

(b) -P =P,

() P,Q+-PDOQ, where 0 € {&, A, =)}
drFE®=0Q)=Q=P);

€ FP=>Q=>(PAR)=Q);
HrFrP=Q=>((P=R)=(@Q=R));
@rEF=Q)=(F=0Q)
(hhP=>Q,Q=RF+P=R,

(i) P=>Q,R=>S+ (P&R) = (Q&S);

) FP=Q&Q=R)=> (P =R);

(k) - (P&Q) = P and + (P&Q) = Q;

) P=>0Q) (P=>R)F(P=>(QAR);
MEEP=Qx=>((P>DAQ@=P));

(N FPAQ) =P,
©FP=Q&R=S5)=((P=R) =(Q=S))
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Lemma5.3.

@F+PVQ=QVP

b)FP=>(PVQ)and FQ = (PVQ);
©FE®=>Q&Q=>P)=>P=Q);
@drFE=Q0=(PVQ)=0Q);

e P=Q+-R=P)=(R=0Q);
HP=>Q+Q@=>R)=>(P=R),

@ F®P=>Q=>(PVR)= (QVR));

(h) (P=0Q),(R=>5)F((PVR)= (QVS));

(i) A(P=Q)=R, A(Q=>P)=RFR; (Conclusion)
@ FP=>0Qv@@=P"r),
K) P=>Q)=>R, (Q=>P)=>RFR; (Conclusion)

) FP=0Q)=F=(PAQ);
(MEQ=(P=0Q)

(n) mHPVL= P,

(©) F(P=Q)= ((PAR) = (QAR));

P FP=Q&R=S)=>((PAR)=(QAS))
@ FP=Q=(PVR)=(QVR).

Proof.

(@) From double using of Lemma 5.2(b) and Lemma 5.2(c), we have
F(PVQ=PVQ)&(P =P).

Hence, by (MP) with (Ag4) in the form
F(PVQ=PVQ)&((P=P)=(PVQ=QVP),

weget H(PVQ =QVP).
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(b) Using (3.26) with (A¢3) and Lemma 5.2(a), we get - P = (PV Q).

Hence, by the Leibniz rule (Leib) with item (a) we have the second part.
(c)

P=(PAQ)&(PAQ)=Q)=(P=0Q) (Lemma 5.2(j))
< ((Leib) + Lemma 5.2(d); "C — part™: (P = (PAQ))&p = (P = Q))
P=PA&EQ=CPAQ)=>(P=0Q)

< ((Leib) + (A2);"C—part: (P = (PAQ)&(Q =p) = (P =Q))
P=PA&Q=QAP)=>(P=0Q)

(d)

PV =((PVQAAQ)

& ((Leib) + (A2) + Item (a); "C — part™: (P V Q) = p)
PvQ=@A@vVP)

& ((Leib) + (Ag3); "C — part™: (P V Q) = p)
PvQ)=Q

& ((Leib); "C — part": p A P)
(PVQ)AP=QAP

& ((Leib)twice + (A2))
PA(PVQ)=PAQ

< ((Leib) + (Ag3); "C — part:p = P A Q)
P=PAQ

(e)
(R=@QAP)=((R=20) (A11)
& ((Leib) + (A2);"C — part: (R = p) = (R = Q))

R=>PAQ)=>R=0Q)
< ((Leib) + (P =P AQ) + Lemma 5.2(a); "C — part™
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(R=>p)=>R=0Q))

(R=P)=>(R=>0)

(F) In the same way as above using Lemma 5.2(e).

(g) From item (b) and item (e), we get
F(P=>Q)=(P>(QVR)).

By this, and item (d) using the Leibniz rule, we obtain
F(P=>Q)=>(PV(QVR)=>(QVR)).

From this, and commutativity and associativity of "V " using (Leib), we get
F(P=>Q)=>{PVRVQ) = (QVR).

We can get from item (b) and item (f)
FW(PVR)VQ) = (QVR))=((PVR))= (QVR)).

Hence, by Lemma 5.2(h), we get the result.

(h) From the assumptions and item (g) by (MP), we have
F(PVR)=>(QVR)and(QVR)=(QVYS).

Lemma 5.2(h) yields the result.

(i) From the assumptions by item (h), we obtain
FAP=>Q)VAQ=P)=(RVR).

From this, and (A11) by (MP), we obtain - (R vV R). Hence, by (EA) with
(Agl) we get - R.

(j) Assuming A(P = Q)= (P = Q) and A(Q = P) = (Q = P). Then, by
item (h) we get
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FAP=>QVAQ=>P)=>((P=>0Q)V(Q=>P).
Then, by (MP) with (Ag11), we obtain the result.

(k) It follows by exactly the similar proof as item (i).

(0
P=PAQ
& ((Leib) + Lemma 5.2(n); "C — part™: P = p)
P=(PAQ)AP

< ((Leib) + (A1);"C — part™: P = p)
P=PA(PAQ) (ie.P=(PAQ))

(m)
(T=TAQ={(TAP)=>Q) (Lemma 5.2(e))
< ((Leib)twice + (A2))
(T=QAT)=>((PAT)=0)
& ((Leib)twice + (A6))
(T=Q)=>F=0)

Which together with (A5) = Q = (T = Q) vyields by Lemma 5.2(h) the

formula - Q = (P = Q).

(n)
Pv 1l
& ((Leib) + (Ag6) + Lemma 5.2(a); "C — part™: P V p)
PV(PAL)
& ((As3)
P

(0)
((PAR)=(PAR)&(Q=P)=>((PAR)=(QAR)) (A9)
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& ((Leib) + Lemma 5.2((a) + (b)) + Rule (T); "C — part™:

pP&(Q =P) = ((PAR) = (QAR)))
T&Q =P)=((PAR)=(QAR))
< ((Leib) + (A5);"C — part:p= ((PAR) = (Q AR)))
(@=P)=>((PAR)=(QAR))
& ((Leib) + Lemma 5.2(d); "C — part:p = ((PAR) = (Q AR)))
P=Q)=>((PAR)=(QAR))

(p) From item (0), and Lemma 5.2(i) we get
F(P=Q&R=S5))=>((PAR)=(QAR)&RAQ) = (SAQ).

From this, and (A2) by using the Leibniz rule twice, we have
F(P=Q)&R=S))=>((PAR)=(QAR)&QAR) =(QAS)).

Hence, by Lemma 5.2(j) and Lemma 5.2(h), we obtain
F((P=Q&R=5)=(PAR)=(QAS).

(@)

(QVR)=(QVRN&P=Q)=>((QVR)=(RVP)) (As4)
& ((Leib) + Lemma 5.2((a) + (b)) + Rule (T); "C — part":

p&(P =Q)=> ((QVR)=(RVP)))
T&P=Q)=((QVR)=(RVP))
< ((Leib) + (As5);"C —part":p = ((QVR) = (RV P)))
P=Q)=>({(QVR)=(RVP))
& ((Leib) + Lemma 5.2(d); "C — part": (P = Q) = p)
P=Q)=((RVP)=(QVR)
< ((Leib) + item (a);"C — part: (P =Q) = (p = (Q VR)))
P=Q)=>((PVR)=(QVR)
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Remark 6.3.

Items (c), (e) and (f) in Lemma 5.3 have been proved in the basic EQ-logic

and we prove them again without need to goodness axiom (Al).
Lemma 5.4.

@r-rP=Q)=((P=>0ArQ=P);
(b) - (P&Q) = (P = Q);
(c) AP =Q) = (AP = AQ);
dr-P=25=>(S=>0)=>F=0);
€ -(PVQ)=>R)=((P=>R)A(Q=R));
f P=R),Q@=>R)F(PVQ)=>R)
@ - (PAQ=>R)=((P=>R)V(Q=R));
(h) HA(PAQ) = (AP AAQ);
(i) FA(PVQ) =(APVAQ);
() H(P&A(P=0Q))=0Q and - (A(P = Q)&P) = Q;
(k) - (P&A(P=Q))=>Q and + (A(P =Q)&P) = Q;
() AP =Q) = ((P&R) = (Q&R)) and
FA(P =Q) = (R&P) = (R&Q)).
(mE AP = Q) = ((P&R) = (Q&R)) and
FA(P = Q) = (R&P) = (R&Q));
(nN) -4Q = (R = (Q&R)) and + 4Q = (R = (R&Q)).

Proof.

(@) From Lemma 5.2(g), (f) and (h), it is easy to see that
FP=>Q)=>(Q=>P)=(P=0Q).

By this, Lemma 5.2(n) and Lemma 5.3(f) using Lemma 5.2(h), we get

FP=>Q)=>((P=>QAQ=>P)=(=0Q).
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Similarly, H(Q =>P)= (P=Q)A(Q = P) = (P = Q)). Then, by

Conclusion Lemma 5.3(K), we obtain

F(P=>QAQ@=P)=(P=0Q)).

Hence, by this, Lemma 5.2(m), Lemma 5.2(c) and Lemma 5.3(c) by (MP) the

result holds.

(b) Using Lemma 5.2(h) with Lemma 5.2(k) and Lemma 5.3(m), we get
F(P&Q) > (P = Q).

Similarly, - (P&Q) = (Q = P). From this, and Lemma 5.2(I), we obtain
F(P&Q) = ((P = Q)A(Q = P)).

Then the Leibniz rule with item (a) yields the result.

(c) By Lemma 5.2(g), Necessitation rule (N) and (A;10) by (MP), we obtain
FAP=Q)=>AP=>Q)and+A(P =Q) = A(Q = P).

Then by Lemma 5.2(h) with (As10), we get
FA(P = Q) = (AP = AQ) and - A(P = Q) = (AQ = AP).

From this and Lemma 5.2(l), we obtain
FA(P = Q) = ((AP = AQ) A (AQ = AP)).

From this and item (a), by (Leib) rule, we obtain the result.

(d) From Lemma 5.2(f) in the form
FP=PAD)=>((P=FPASHAQ =(PAS)=(PAS)AQ),

and associativity and commutativity of "A" and Lemma 5.2(d) by the Leibniz

rule, we get



75

FP=S5=(PAS)=>Q)= P =(QAS)).

From this and Lemma 5.2(g) by Lemma 5.2(h), we obtain
FP=S5={PAS)=>Q)= (P =(QAS)).

From this, (AL1) and double Lemma 5.3(e) using Lemma 5.2(h), we get
FP=35={(PAS)=Q) =P =>Q).

On the other hand, by Lemma 5.2(e) and Lemma 5.3(f), we obtain
F(PAS)=>Q=>P=0)=>((S=Q) = FP=0Q).

Hence, by Lemma 5.2(h) the result holds.

(e) From item (d), we have
F((PVA)=Q)=({(@=>R)=((PVQ)=R)

By this, Lemma 5.2(n) and Lemma 5.3(f) using Lemma 5.2(h), we get
F(PVQ)=Q)=>({(P=>R)A@=>R)= ((PVQ)=R)).

From this, Lemma 5.3(d) and Lemma 5.2(a) using (Leib), we obtain
F(P=>Q)=>((P=>R)A@=>R)=((PVQ)=R)).

Similarly, F(Q=P)=> (P=>R)A(Q=>R) = ((PVQ) = R)). Then, by

Conclusion Lemma 5.3(k), we obtain
F(P==RAQ@=>R)=((PVQ)=>R).

On the other hand, - ((PV Q) = R) = ((P = R) A (Q = R)) easily follows
from Lemma 5.3(b) and Lemma 5.3(f) by Lemma 5.2(l). Hence, by (MP) with

Lemma 5.2(c) and Lemma 5.3(c), we get the result.
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(F) Direct from the assumptions, Lemma 5.2(c), item (e) and Lemma 5.2(a)
using (EA).
(g) From Lemma 5.3(b) and Lemma 5.3(e), we get

F(PAQ=>R)=>Q@=>R)=>{PAQ=>R)=>((P=>R)V
(@ = R))).

From this, and item (d) in the form
FP=>PAQ)=>{(PAQ)=>R)=>((Q=R))

by Lemma 5.2(h), we obtain
F(P=>FPAQ)=>{((PAQ)=>R)=>((P=>R)V(Q=R)).

By this, Lemma 5.3(I) and Lemma 5.2(a) by (Leib), we obtain
FP=>Q)=>(PAQ=>R)=((P=>R)V(Q=>R))).

Similarly, H (Q = P)= (((PAQ)=R) = ((P=R)V(Q = R))). Then,

by Conclusion Lemma 5.3(k), we get
F((PAQ)=R)=({(P=R)V(Q=>R)).

On the other hand, from Lemma 5.2(n) using Lemma 5.3(f), we have
F(P=R)=>((PAQ)=>R)and+-(Q=R)= ((PAQ) > R).

From this and item (f), we obtain
F((P=RV@=R)={(PAQ)=R).

Hence, by (MP) with Lemma 5.2(c) and Lemma 5.3(c), we get the result.

(h) From (A¢10) and Lemma 5.3(h), we get
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F@AP=>PAQ)VAQ=>((PAQ)) = ((AP=>APAQ)V(AQ =

AP AQ))).

By this and Lemma 5.3(1) by (Leib) twice, we obtain
F(AP=>Q)VAQ=P))= ((AP=>APAQ))V(AQ = A(PAQ))).

From this by the Leibniz rule with item (g), we get
F@AP=QVAQ=P))=>((APAAQ) = A(PAQ)).

Then, by (MP) with (Ag11), we obtain - (AP A AQ) = A(P A Q).

On the other hand, From Lemma 5.2(n) and (A,10) using (MP), we obtain
FA(PAQ)=>APand+ A(PAQ) = AQ.

Then, by Lemma 5.2(1), we obtain - A(P A Q) = (AP AAQ). Hence, by
(MP) with Lemma 5.2(c) and Lemma 5.3(c), we get the result.

(i) From Lemma 5.3(b), we get - AQ = (AP v AQ) and then Lemma 5.3(e),

we obtain
F(APVQ) = AQ) = (A(PVQ) = (APVAQ)).

From this, (As10) and Lemma 5.3(f) by (MP), we get
FA(PVQ) = Q)= (A(PVQ) = (APVAQ)).

Hence, by (Leib) with Lemma 5.3(d) and Lemma 5.3(a), we obtain
AP = Q)= (A(PVQ)= (AP VAQ)).

Similarly, - A(Q = P) = (A(PV Q) = (AP VAQ)). Then, by Conclusion
Lemma 5.3(i), we get - (A(P V Q) = (AP vV AQ)).
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On the other hand, from Lemma 5.3(b), Necessitation (N) and (As10) using
(MP), we get
AP =>A(PVQ)and+ AQ = A(PV Q).

Then, by item (f), we obtain - (AP v AQ) = A(P Vv Q). Hence, by (MP) with
Lemma 5.2(c) and Lemma 5.3(c), we get the result.

(J) From Lemma 5.2(K) and Lemma 5.3(f), we get
FP=Q)=((P&A(P = Q))= Q).

From this and (As8) (F A(P = Q) = (P = Q)) using Lemma 5.2(h), we

obtain
AP = Q) = (P&A(P = Q) = Q).
On the other hand, from (As6) and Lemma 5.3(e), we get
F=AP = Q) = (AP = Q)= Q),
and from Lemma 5.2(k) and Lemma 5.3(f), we obtain
(AP = Q)= Q)= (P&AP = Q) = Q).
Hence, by Lemma 5.2(h) we obtain
- =AP = Q) = (PRACP = Q) = Q).
Then, by item (f) and (MP) with (A;13), we get + (P&A(P = Q)) = Q.
Similarly, - (A(P = Q)&P) = Q.

(k) Direct from Lemma 5.2(g), Necessitation (N) and (A;10) using (MP), we
get

FAP=Q)=> AP =>0Q)
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By this, (A4) and Lemma 5.2(i), we obtain
FP&A(P = Q) = P&A(P = Q) and - A(P = Q)&P = A(P = Q)&P
Hence, from item (j) using Lemma 5.2(h) the result holds.

)
AP =Q) = ((T&P)&R) = (T&(Q&R)) (Ag13)
& ((Leib)twice + (A5))
A(P = Q) = ((P&R) = (Q&R))

The second part follows exactly by the similar proof as above.

(m) By item (I), we get
AP AQ) =P)= ((PAQ&R) = (P&R)).

Then, by Lemma 5.2(g) and (h), we obtain
FA(PAQ)=P)= ((P&R) = ((P A Q)&R)).

By this, (A7), double Lemma 5.3(e) using (MP), we have
AP = Q) = (P&R) = ((Q&R)).

Similarly, - A(P = Q) = ((R&P) = (R&Q)).

(n) From (A¢5), and (A10) using (N) and then (MP), we get
FAQ = A(T = Q).

From this, and (A6) by (Leib), we obtain
FAQ = A(T = Q).

Hence, by Lemma 5.2(h) with item (m), we obtain

FAQ = ((T&R) = (Q&R)).
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Thus, by the Leibniz rule with (A5), we get
FAQ = (R = (Q&R)).
Similarly, - AQ = (R = (R&Q)). ]

We extend to £EQj-logic the following result. The proof is completely the

same as in [5]. We shall supply the proof because of the importance of the
statement and to make the paper self-contained:

Lemma5.5.

(a) + (AP&AP) = AP;
() - AP = Q)&A(R = S) = ((P&R) = (Q&S)).

Proof.
(a) By Lemma 5.4(n), we get
F AP = (AP = (AP&AP)).
On the other hand, by (A;6) and Lemma 5.3(e), we obtain
F - AP = (AP = (AP&AP)).
Hence, Lemma 5.4(f) and (As13) by (MP) the result holds.
(b) Direct from Lemma 5.4(l) and Lemma 5.2(i) by the transitivity of " = ".m
5.2 EQj-logic: semantics
Definition 5.2.

Interpretation of #EQj-logic is a tuple R = (€,,e) in which €4 = (E, A, V
,®,~,A,0,1) is £EQj-algebra and a functione: Fr - E called the truth
evaluation of the interpretation that satisfies the following identities for all

formulas P, Q € Fr:
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e(T)=1; e(L)=0;
e(PAQ) =e(P)Ae(Q);
e(PvQ) =e(P)Ve(Q);
e(P&Q) = e(P) Q e(Q);
e(P=Q) =e(P) ~ e(Q);
e(AP) = Ae(P).

Let T be atheory and R = (€, e) be an interpretation, then
If R=ePforallP €T, wewriteR =T,

and we say that R is a £4-model of T.

Lemma 5.6.

The inference rules of #EQj-logic are sound in the following sense. Let a
tuple R = (€,,e) in which €, is /EQj}-algebra and a function e: Fr — E

called the truth evaluation of the interpretation:

(@) Ife(P = Q) = 1then, e(C[p:= Q] = C[p: = R]) = 1 forany formula P;
(b) Ife(P) =1ande(P = Q) = 1,thene(Q) = 1.

Proof.

It has been proved that Leibniz is sound in the setting of basic EQ-logic [6]

(see Lemma 3.9).
(b) Suppose thate(P) =1ande(P = Q) = 1, then

e(P= Q) =e(P) ~ (e(P)Ae(Q))
=e(P)»e(@ =1-¢(Q)
=1~1Ae(@)=1~e(@) =1

Then, necessarily e(Q) = 1. [
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It is straightforward using Lemma 3.8, the axioms and the properties of #EQ3}-

algebras to see all the logical axioms of the #EQj-logic are tautologies.

The following is standard procedure due to Lindenbaum and Tarski, we now

address the completeness of the #EQ}-logic.
Let T be a theory over the #EQj-logic. Put
P=Q iff THP=Q, P,Q€Fr

It follows from Lemma 5.2(b), Lemma 5.2(d) and Lemma 5.2(j) that" = " is

an equivalence relation on Fr.

Let p: F - Fr/= be the quotient map onto the set of all equivalence classes
[Pl ={Q | T+P = Q}. The Leibniz rule (Leib) guarantees that the logical
connectives possess the substitution property for " = ". In consequence, the

following operations are well defined on the set E = {|P|| P € Fy}:

|P| Ar 1@l = p(P AQ);

|P| vz 1@l = p(PVQ);

IP| @7 |Q] = p(P&Q);
|P| ~7 1@ = p(P = Q);
Ar|Q| = p(AP).

The partial order < is also well-defined on Fr /=~ by
|P| < 1Q| iff |P|A;|Q|=|P|liff TFPAQ=P iff TFP = Q.

Let E; =(E, Ar, Vr, ®1, ~7,Ar, 07, 11 ) be the Lindenbaum algebra of the
theory T, where 1 = p(T), 07 = p(L). By virtue of

Lemmab5.1-Lemma 5.4, & is YEQ}-algebra and the top element 1 is exactly
the equivalence class {P € F; | T I P}. Moreover, the quotient map is a truth

evaluation and the separateness holds as follows:
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Let [P| ~7 |Q] =1,then1 = |P| ~7 [Q] = p(P = Q) = p(P) ~ p(Q).
Then, necessarily p(P) = p(Q); thatis |P| = |Q].

From these arguments with the representation theorem (Theorem 4.7), we

deduce the following theorem.
Theorem 5.1. (Completeness)

The prelinear #EQj-logic is generally complete and chain complete for the
variety of prelinear #EQj-algebras. Specifically, for every formula P € F; and

for every theory T over the prelinear #EQ3}-logic the following are equivalent:

@ T+P.

(b) For each prelinear #EQ}-algebra €, and each £,-model of Rof T, R = A.

(c) For each linearly ordered #EQj-algebra &, and each £y-mode R of T,
R = A.

Theorem 5.2. (Deduction theorem)

For each theory T, formula P and arbitrary formula Q it holds that
Tu{P}rQ iff THFAP=Q

Proof.

Let T U {P} - Q. The proof follows by induction on the proof length of Q.

@ If Q:=P, Q €T orQ is alogical axiom, then (A;8) and Lemma 5.3(m)
lead to the result.
(b) Let Q have been obtained using the rule (EA) by the proof

...,R, R=0Q, Q.
Then, from the inductive hypothesises

THAP=R,and T + AP = (R = Q),
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the Necessitation rule (N) and (As10) using (MP), we have
T+ AP = R,and T + AAP = A(R = Q).

From this and (Leib) with (A¢9), we obtain
T+HAP=R,and T + AP = A(R = Q).

From this and Lemma 5.2(i), we get
T + (AP&AP) = (R&A(R = Q)).

By this, Lemma 5.5(a) and Lemma 5.4(k) using Lemma 5.2(h), we have T +
AP = Q.

(c) Let Q:= S[p: = U] = S[p:= V] have been obtained using the Leibniz
rule (Leib) by the proof

L, U=V, S[p:=U] =S[p:=V].
Then, the proof proceeds by induction on the complexity of the formula S:

(i) If Sis L, then
S[p:=U] =S[p:=V]isS =S.
Using (MP) with Lemma 5.3(m):
THS=S)=>AP=(5S5=Y9)),
wehave T+ AP = (S =9).
(i) If Sisp then it follows directly from the inductive hypothesis.
(iii) Let S be G O H, where O € {A,V, &,=}. Then we must prove that

T+AP = (GOH)[p:=U]=(GoH)[p:=V]).
That is

T+ AP = ((G'ODH') = (6"0H")) (5.2)

where
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G'=Glp=E] H =
=G

= [p = E]
G":=G[p:=F], H":= H[p:=

H
H[p:= F].
By the inductive assumptions,
THAP=(G'=G")and T+ AP = (H' = H").
Thus, in case that O € {A, =}, from Lemma 5.2(i), we have
T + (AP&AP) = (G' = G")&(H' = H").
By this, and (Leib) with Lemma 5.5(a), we get
THAP = (G =G")&(H' =H").
Thus, (5.2) follows by Lemma 5.2(h) with Lemma 5.2(0)
THAP= (G'=H")=(G"=H").
Similarly, using Lemma5.3(p) T - AP = (G'AH") = (H" AG").
In case that O is "&", from rule (N), (MP) with (A;10), we get
T+AAP = A(G'=G")and T - AAP = A(H' = H'"").
By this, and (Leib) with (As9), we obtain
THAP=>A(G' =G")and T AP = A(H' = H").

Hence, from Lemma 5.2(i), and the Leibniz (Leib) with Lemma 5.5(a),

we have
T+AP = A(G'=G")&A(H = H')

Thus, (5.2) follows from Lemma 5.5(b) using Lemma 5.2(h). In case

that O is v, from Lemma 5.3(q) and Lemma 5.2(i), we get

TH((G'=G)&H =H") =
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(((G'VH") = (G"VH)&((G"VH") = (6" VH")))
By this and the transitivity of " = " using Lemma 5.2(h), we have
Tr (G =G6"&H =H") = ((G'VH) = (G"VH")).

Hence, by this, the inductive assumptions, Lemma 5.2(i) and Lemma
5.5(a) using Lemma 5.2(h), (5.2) holds.

(iv) LetS be AH. Then we have

(L) T-AP = (H' =H") (Inductive assumption)
(L2) T+AAP = A(H'=H") ((L.1),rule(N), (Ag10) and (MP))
(L3) THAP=A(H' =H") ((L.2), (Leib), and (AS9))

(L4)TrAP = (AH' = AH") ((L.3), Lemma 5.4(c), Lemma 5.2(h))
(d) Let Q: = AR have been obtained using rule (N) by the proof

..,R,AR.

Then, from the inductive assumptions: T + AP = R, the Necessitation rule
(N), and (Ag10) using (MP), we get: T + AAP = AR. From this and (Leib)
with (A 9), we obtain T + AP = AR. Hence, by Lemma 5.2(h) with (A¢8), we

get the result.
The converse implication is obtained using rules (N) and (MP). [ ]
Remark 5.3:

One of the useful properties of A-connective is that the deduction theorem
cannot be proved without introducing it. It is also necessary to develop the

predicate #EQ}-logic.
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Chapter 6
Conclusion and Future Work

We continue in this thesis the study of EQ-algebras, begun in [7, 8, 22, 23].
We introduced and studied a class of separated (not necessarily good) lattice
EQ-algebras that may be represented as subalgebras of products of linearly
ordered ones. Such algebras are called representable. Namely, we enriched
separated lattice EQ-algebras with a unary operation (the so called Baaz delta),
fulfilling some additional assumptions. The resulting algebras are called
¢EQj-algebras. One of the main results of this thesis is to characterize the
class of representable #EQ}-algebras. We showed that prelinearity alone
characterizes the representable class of #EQj}-algebras. We also supplied a
number of useful results, leading to this characterization. We also formulated
the corresponding #EQj-logic and established its completeness for the
semantical domain of £EQ3-algebras. We in detail introduced syntax and
semantics of the #EQ}-logic and prove various theorems characterizing its

properties including deduction theorem.

Finally, let us remark that #ZEQ}-logic open the door for developing predicate
?EQj-logic; also to introduce and study a class of #EQj-logics whose

semantical domain based on separated (need not to be good) EQ-algebras.
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