

Benha University Benha Faculty of Engineering Semester: Second

No. of Pages: 3

Department: Civil Engineering Program: Under graduate Subject: Design Project for RC

Structures (1) Code: C1252

Any data not given is to be reasonably assumed.

All calculations and sketches should be clear and neat

Material properties ($f_{cu} = 30 \text{ N/mm}^2$, $f_y = 400 \text{ N/mm}^2$ for H.G.S, $f_y = 280 \text{ N/mm}^2$ for Mild Steel)

Figure (1) shows the typical floor building, with the following data:

There are walls for all beams

- Wall thickness = 250 mm

- Density of brick walls (including plaster) = 18 kN/m^3

- All columns $= 300 \times 500 \text{ mm}$

Given:

Live Load (L.L) = 2.5 kN/m^2 Height of Floor (H) = 3500 mm

It is required:

- 1- Design of RC slab and draw the reinforcement details on plan.
- 2- Design of B1 and B2 in the plan against bending moment and shear.
- 3- Write down the beam schedule for B1 and B2 in the plan.
- 4- Give neat sketches of all reinforcement details for Beam B1, (using the moment of resistance diagram).

Benha University Benha Faculty of Engineering

Semester: Second No. of Pages: 3

Department: Civil Engineering Program: Under graduate Subject: Design Project for RC

Structures (1) Code: C1252

All dimension millimeter

Figure (1)

Benha University
Benha Faculty of Engineering
Semester: Second

No. of Pages: 3

Department: Civil Engineering Program: Under graduate Subject: Design Project for RC

Structures (1) Code: C1252

For the cross-sections shown in Figure (2)

- Determine the Moment of Resistance of EACH section if $t_s = 100 \text{ mm}$ $A_s' = 0.2 A_s$

- Determine the A_s balanced for EACH section with the following data:

$$E_s = 210 \text{ GPa}$$

$$\pmb{\varepsilon}_c = 0.0035$$

Variables of Sections

b	t	fcu	A_s
mm	mm	N/mm ²	mm^2
150	500	250	1000