Benha University
Benha Faculty of Engineering
Semester: Second
No. of Pages: 3

Department: Civil Engineering
Program : Under graduate
Subject: Design Project for RC
Structures (1)
Code: C1252

Any data not given is to be reasonably assumed.
All calculations and sketches should be clear and neat
Material properties ($f_{\mathrm{cu}}=\mathbf{3 0} \mathbf{N} / \mathrm{mm}^{2}, \mathrm{f}_{\mathrm{y}}=\mathbf{4 0 0} \mathrm{N} / \mathrm{mm}^{2}$ for H.G.S, $\mathrm{f}_{\mathrm{y}}=\mathbf{2 8 0} \mathbf{N} / \mathrm{mm}^{2}$ for Mild Steel)

Figure (1) shows the typical floor building, with the following data:
There are walls for all beams

- Wall thickness $=250 \mathrm{~mm}$
- Density of brick walls (including plaster) $=18 \mathrm{kN} / \mathrm{m}^{3}$
- All columns $=300 \times 500 \mathrm{~mm}$

Given:

Live Load (L.L)	$=2.5 \mathrm{kN} / \mathrm{m}^{2}$
Height of Floor (H)	$=3500 \mathrm{~mm}$

It is required:
1- Design of RC slab and draw the reinforcement details on plan.
2- Design of B1 and B2 in the plan against bending moment and shear.
3- Write down the beam schedule for B1 and B2 in the plan.
4- Give neat sketches of all reinforcement details for Beam B1, (using the moment of resistance diagram).

All dimension millimeter

Figure (1)

Benha University
Benha Faculty of Engineering
Semester: Second
No. of Pages: 3
Department: Civil Engineering
Program : Under graduate
Subject: Design Project for RC
Structures (1)
Code: C1252

For the cross-sections shown in Figure (2)

- Determine the Moment of Resistance of EACH section if
$\mathrm{t}_{\mathrm{s}}=100 \mathrm{~mm}$

$$
\mathrm{A}_{\mathrm{s}^{\prime}}=0.2 \mathrm{~A}_{\mathrm{s}}
$$

- Determine the A_{s} balanced for EACH section with the following data:

$$
\mathrm{E}_{\mathrm{s}}=210 \mathrm{GPa} \quad \boldsymbol{\varepsilon}_{\mathrm{c}}=0.0035
$$

$\operatorname{Sec}(\mathrm{A})$
Figure (2)

Variables of Sections

b	t	f_{cu}	A_{s}
mm	mm	$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{~mm}^{2}$
150	500	250	1000

