Case Study 1

You are researching which type of fertilizer and planting density produces the greatest crop yield in a field experiment. You assign different plots in a field to a combination of fertilizer type (1, 2, or 3) and planting density (1=low density, 2=high density), and measure the final crop yield in bushels per acre at harvest time. You can use a two-way ANOVA to find out if fertilizer type and planting density have an effect on average crop yield

density	block	fertilizer	yield
1	1	1	177.2286923
2	2	1	177.5500413
1	3	1	176.4084619
2	4	1	177.7036255
1	1	1	177.1254863
2	2	1	176.7783425
1	3	1	176.7463019
2	4	1	177.0611642
1	1	1	176.2749493
2	2	1	177.9672029
1	3	1	176.6012998
2	4	1	177.0305428
1	1	1	177.4795072
2	2	1	176.8741298
1	3	1	176.1143883
2	4	1	176.0083945
1	1	1	176.1083126
2	2	1	178.3574409
1	3	1	177.2624451
2	4	1	176.9188449
1	1	1	176.2390158
2	2	1	176.5730698
1	3	1	176.0392979
2	4	1	176.8179222
1	1	1	176.1605865
2	2	1	177.2264241
1	3	1	175.938533
2	4	1	177.1649367
1	1	1	175.3608396
2	2	1	177.2769957
1	3	1	175.9454438
2	4	1	175.8827796
1	1	2	176.4793409
2	2	2	176.0443421
1	3	2	177.4124617
2	4	2	177.3608182
1	1	2	177.3854992

2		· ·)	176.9758077
1	2 3	2 2	177.3797787
2	4	2	177.9979951
1	4	2	176.4348626
2	$\frac{2}{2}$	2	176.9332651
1	3 4	2 2	175.9834802
2			177.0340927
1	$\frac{1}{2}$	2	176.4367624
2	2 3	2 2	176.067745
			177.1210486
2	4	2	177.1977214
1	1	2	176.6037241
2	2	2	177.2081714
1	3	2	177.1488286
2	4	2	176.8190767
1	1	2	176.9990669
2	2	2	178.1346046
1	3	2	176.429156
2	4	2	176.6683229
1	1	2	176.8958669
2	2	2	177.7794929
1	3	2	176.414495
2	4	2	176.8788977
1	1	2	177.5806831
2	2	2	176.9572689
1	3	2	175.7475456
2	4	2	177.3525951
1	1	3	177.1041864
2	2	3	178.0796352
1	3	3	176.9034221
2	4	3	177.5402842
1	1	3	177.0327097
2	2	3	178.2860419
1	3	3	176.4054102
2	4	3	176.4308301
1	1	3	177.3963306
2	2	3	176.9255758
1	3	3	177.0550458
2	4	3	177.3441639
1	1	3	177.1283675
2	2	3	177.1683022
1	3	3	176.3539406
2	4	3	179.060899
1	1	3	176.3005171
2	2	3	177.5933524

3	3	177.1152452
4	3	177.7944574
1	3	177.0040381
2	3	178.0368584
3	3	177.7013663
4	3	177.6328083
1	3	177.6522746
2	3	177.1004179
3	3	177.187967
4	3	177.4052919
1	3	178.1416444
2	3	177.7106125
3	3	177.6872644
4	3	177.118176
	$ \begin{array}{r} 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 2 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Required

- 1. Analyze the data and draw conclusions (Use α 0.05).
- 2. Rerun the analysis as a one-way ANOVA.
- 3. Fit the data with a linear regression model.
- 4. Search for a case study that applies factorial design of experiments in an industrial field. then analyze this case study based on what you had studied .

Note: You may use any software for the analysis (Exel, Minitab, Python, R,etc.)

Case Study 2: Discounts and Expected Prices

Does the frequency with which a supermarket product is offered at a discount affect the price that customers expect to pay for the product? Does the percent reduction also affect this expectation? These questions were examined by researchers in a study conducted on students enrolled in an introductory management course at a large midwestern university. For 10 weeks, 160 subjects received information about the products. The treatment conditions corresponded to the number of promotions (one, three, five, and seven) during this 10-week period, and the percent that the product was discounted (10%, 20%, 30%, and 40%). Ten students were randomly assigned to each of the 4*4 = 16 treatment

Number of promotions	Percent discount					Expected	price (\$)				
1	40	4.10	4.50	4.47	4.42	4.56	4.69	4.42	4.17	4.31	4.59
1	30	3.57	3.77	3.90	4.49	4.00	4.66	4.48	4.64	4.31	4.43
1	20	4.94	4.59	4.58	4.48	4.55	4.53	4.59	4.66	4.73	5.24
1	10	5.19	4.88	4.78	4.89	4.69	4.96	5.00	4.93	5.10	4.78
3	40	4.07	4.13	4.25	4.23	4.57	4.33	4.17	4.47	4.60	4.02
3	30	4.20	3.94	4.20	3.88	4.35	3.99	4.01	4.22	3.70	4.48
3	20	4.88	4.80	4.46	4.73	3.96	4.42	4.30	4.68	4.45	4.56
3	10	4.90	5.15	4.68	4.98	4.66	4.46	4.70	4.37	4.69	4.97
5	40	3.89	4.18	3.82	4.09	3.94	4.41	4.14	4.15	4.06	3.90
5	30	3.90	3.77	3.86	4.10	4.10	3.81	3.97	3.67	4.05	3.67
5	20	4.11	4.35	4.17	4.11	4.02	4.41	4.48	3.76	4.66	4.44
5	10	4.31	4.36	4.75	4.62	3.74	4.34	4.52	4.37	4.40	4.52
7	40	3.56	3.91	4.05	3.91	4.11	3.61	3.72	3.69	3.79	3.45
7	30	3.45	4.06	3.35	3.67	3.74	3.80	3.90	4.08	3.52	4.03
7	20	3.89	4.45	3.80	4.15	4.41	3.75	3.98	4.07	4.21	4.23
7	10	4.04	4.22	4.39	3.89	4.26	4.41	4.39	4.52	3.87	4.70

Required

- 1. Analyze the data and draw conclusions (Use α 0.05).
- 2. Rerun the analysis as a one-way ANOVA.
- 3. Fit the data with a linear regression model.
- 4. Search for a case study that applies factorial design of experiments in an industrial field. Then analyze this case study based on what you had studied .

Note: You may use any software for the analysis (Exel, Minitab, Python, R,etc.)

Case Study 3

In the automobile industry, three quality inspectors (A, B, C) measure the breaking strength of car seat fabric and the management wants to test for a difference between their measurements by comparing means.

Α	В	С
11.3	9.98	10.58
10.62	8.68	9.46
10.36	11.39	10.15
10.23	9.16	10.39
10.42	9.64	9.71
12.64	8.49	9.48
8.75	9.69	10.74
10.49	11.14	10.16
10.33	9.02	11
10.04	9.47	12.54
10.12	10.78	9.88
9.89	9.78	10.1
10.31	10.1	8.85
10.46	10.27	12.52
9.69	10.01	10.74
9.29	9.01	9.19
10.79	9.78	10.08
10.15	9.99	10.51
8.83	9.27	11.42

8.47	10.41	12.12
9.55	9.42	10.16
11.03	9.27	12.06
9.74	8.15	9.49
11.21	9.69	11.05
11.04	10.63	8.53

Required

- 1. Analyze the data and draw conclusions (Use α 0.05).
- 2. Fit the data with a linear regression model.
- 3. Search for two case studies that apply the factorial design of experiments in an industrial field. Then analyze this case study based on what you had studied.

Note: You may use any software for the analysis (Exel, Minitab, Python, R,etc.)