

Benha University Benha Faculty of Engineering Semester: Second No. of Pages: 3 Department: Civil Engineering Program : Under graduate Subject: Design Project for RC Structures (1) Code: C1252

Any data not given is to be reasonably assumed.

All calculations and sketches should be clear and neat

Material properties (f_{cu} = 30 N/mm², f_y = 400 N/mm² for H.G.S, f_y = 280 N/mm² for Mild Steel)

Figure (1) shows the typical floor building, with the following data:

There are walls for all beams

Wall thickness = 250 mm
Density of brick walls (including plaster) = 18 kN/m³
All columns = 300x500 mm

Variables

Live Load (L.L)	$= 2 \text{ kN/m}^2$
	$= 3 \text{ kN/m}^2$
	$=4 \text{ kN/m}^2$
Height of Floor (H)	= 3000 mm
	= 4000 mm
	= 5000 mm
Dimension A	= 4000 mm
	= 4750 mm
	= 5500 mm
Dimension B	= 3500 mm
	= 4500 mm
	= 5500 mm

It is required:

- 1- Design of RC slab and draw the reinforcement details on plan.
- 2- Design of B1 and B2 in the plan against bending moment and shear.
- 3- Write down the beam schedule for B1 and B2 in the plan.
- 4- Give neat sketches of all reinforcement details for Beam B1, (using the moment of resistance diagram).

Benha University Benha Faculty of Engineering Semester: Second No. of Pages: 3 Department: Civil Engineering Program : Under graduate Subject: Design Project for RC Structures (1) Code: C1252

All dimension millimeter

Figure (1)

For the cross-sections shown in Figure (2)

- Determine the Moment of Resistance of EACH section if $t_s = 100 \text{ mm}$ $A_s' = 0.2 A_s$
- Determine the A_s balanced for EACH section with the following data:

$$E_s = 210 \text{ GPa}$$

 $\boldsymbol{\varepsilon}_c = 0.0035$

Sec (B)

Sec (C)

Figure (2)

Variables of Sections

Code	b	t	f_{cu}	As
	mm	mm	N/mm ²	mm^2
Ι	150	500	250	1000
II	200	600	300	1500
III	250	700	350	2000