## Answer the following questions

## Question (1):

Find the equivalent resistance $\boldsymbol{R}_{a b}$ for the circuit shown in fig.1.

Fig. 1


## Question (2):

[10 Marks]
a) Use Kirchhoff's laws and Ohm's law to find the voltage $\mathbf{v}_{\mathbf{0}}$ as shown in Fig. 2.
b) Show that your solution is consistent with the constraint that the total power developed in the circuit equals the total power dissipated.


Fig. 2

## Question (3):

[10 Marks]
Use the mesh current method to find the total power dissipated in the circuit in Fig. 3


Fig. 3

Question (4):
[10 Marks]
Determine the Thevenin equivalent with respect to the terminals $\mathrm{a}, \mathrm{b}$ for the circuit shown in Fig. 4.


Fig. 4

## 

## Question (5):

[10 Marks]
The switch in the circuit shown in Fig. 5 has been in position x for a long time.
At $t=0$, the switch moves instantaneously to position y. Find
a) $v_{c}(t)$ for $t \geq 0$,
b) $v_{o}(t)$ for $t \geq 0+$
c) $i_{0}(t)$ for $t \geq 0+$, and
d) The total energy dissipated in the $60 \mathrm{k} \Omega$ resistor.


Fig. 5

## Question (6):

[10 Marks]
Use the concept of source transformation to find the phasor voltage $\mathrm{V}_{0}$ in the circuit shown in
Fig. 6.


Fig. 6
Fig. 6

