## Model Answer

Q1
Solved exactly in lecture.
Q2


$$
\begin{aligned}
& i_{\mathrm{cd}}=80 / 16=5 \mathrm{~A} \\
& \quad v_{\mathrm{ac}}=125-80=45 \quad \text { so } \quad i_{\mathrm{ac}}=45 / 15=3 \mathrm{~A} \\
& i_{\mathrm{ac}}+i_{\mathrm{bc}}=i_{\mathrm{cd}} \quad \text { so } \quad i_{\mathrm{bc}}=5-3=2 \mathrm{~A} \\
& \\
& v_{\mathrm{ab}}=15 i_{\mathrm{ac}}-5 i_{\mathrm{bc}}=15(3)-5(2)=35 \mathrm{~V} \quad \text { so } \quad i_{\mathrm{ab}}=35 / 7=5 \mathrm{~A} \\
& \\
& i_{\mathrm{bd}}=i_{\mathrm{ab}}-i_{\mathrm{bc}}=5-2=3 \mathrm{~A}
\end{aligned}
$$

Calculate the power dissipated by the resistors using the equation $p_{R}=R i_{R}^{2}$ :

$$
p_{7 \Omega}=(7)(5)^{2}=175 \mathrm{~W} \quad p_{30 \Omega}=(30)(3)^{2}=270 \mathrm{~W}
$$

$$
p_{15 \Omega}=(15)(3)^{2}=135 \mathrm{~W} \quad p_{16 \Omega}=(16)(5)^{2}=400 \mathrm{~W}
$$

$$
p_{5 \Omega}=(5)(2)^{2}=20 \mathrm{~W}
$$

[b] Calculate the current through the voltage source:
$i_{\mathrm{ad}}=-i_{\mathrm{ab}}-i_{\mathrm{ac}}=-5-3=-8 \mathrm{~A}$
Now that we have both the voltage and the current for the source, we can calculate the power supplied by the source:
$p_{g}=125(-8)=-1000 \mathrm{~W} \quad$ thus $\quad p_{g}($ supplied $)=1000 \mathrm{~W}$
$[\mathrm{c}] \sum P_{\mathrm{dis}}=175+270+135+400+20=1000 \mathrm{~W}$
Therefore,

$$
\sum P_{\mathrm{supp}}=\sum P_{\mathrm{dis}}
$$

Q3

After the $20 \Omega-100 \Omega-50 \Omega$ wye is replaced by its equivalent delta, the circuit reduces to


Now the circuit can be reduced to


Then Rtotal $=96 * 304 / 400=$

Q4


Node equations:

$$
\begin{aligned}
& \frac{v_{1}}{20}+\frac{v_{1}-20}{2}+\frac{v_{3}-v_{2}}{4}+\frac{v_{3}}{80}+3.125 v_{\Delta}=0 \\
& \frac{v_{2}}{40}+\frac{v_{2}-v_{3}}{4}+\frac{v_{2}-20}{1}=0
\end{aligned}
$$

Constraint equations:

$$
v_{\Delta}=20-v_{2}
$$

$$
v_{1}-35 i_{\phi}=v_{3}
$$

$$
i_{\phi}=v_{2} / 40
$$

Solving, $v_{1}=-20.25 \mathrm{~V} ; \quad v_{2}=10 \mathrm{~V} ; \quad v_{3}=-29 \mathrm{~V}$

Let $i_{g}$ be the current delivered by the 20 V source, then

$$
i_{g}=\frac{20-(20.25)}{2}+\frac{20-10}{1}=30.125 \mathrm{~A}
$$

$$
p_{g}(\text { delivered })=20(30.125)=602.5 \mathrm{~W}
$$

Q5

$130 / \underline{0^{\circ}}=(40+j 50) \mathbf{I}_{\mathrm{a}}-40 \mathbf{I}_{\Delta}+30 \mathbf{I}_{\Delta}$
$0=-40 \mathbf{I}_{\mathbf{a}}+30 \mathbf{I}_{\Delta}+(140-j 50) \mathbf{I}_{\Delta}$

Solving,
$\mathbf{I}_{\Delta}=(400-j 400) \mathrm{mA}$
$\mathbf{V}_{o}=100 \mathbf{I}_{\Delta}=40-j 40=56.57 /-45^{\circ}$
$v_{o}=56.57 \cos \left(10,000 t-45^{\circ}\right) \mathrm{V}$
[a] Superposition must be used because the frequencies of the two sources are different.
[b] For $\omega=2000 \mathrm{rad} / \mathrm{s}$ :

$10 \|-j 5=2-j 4 \Omega \quad$ so $\quad \mathbf{V}_{o 1}=\frac{2-j 4}{2-j 4+j 2}\left(20 /-36.87^{\circ}=31.62 /-55.3^{\circ} \mathrm{V}\right.$
For $\omega=5000 \mathrm{rad} / \mathrm{s}$ :

$j 5 \| 10=2+j 4 \Omega$
$\mathbf{V}_{o 2}=\frac{2+j 4}{2+j 4-j 2}\left(10 \underline{16.26^{\circ}}\right)=15.81 / \underline{34.69^{\circ}} \mathrm{V}$
Thus,
$v_{o}(t)=\left[31.62 \cos \left(2000 t-55.3^{\circ}\right)+15.81 \cos \left(5000 t+34.69^{\circ}\right)\right] \mathrm{V}, \quad t \geq 0$

