نموذج أسئلة و اجابة مادة الاقتصاد الهندسي م 1482

أستاذ المادة : د. محمد عبد اللطيف الشرنوبي

Benha University College of Engineering at Benha

Ouestions For Final Examination Time :120 min. Subject: Engineerin Economy M1482 June/6/ 2018 Fourth Year Mechanical Engineering **Examiner:Dr.Mohamed Elsharnoby** Number of questions = 6, number of pages = 2

1.A man wants to help provide a college education for his young daughter. He can afford to invest \$600/yr for the next 4 years, beginning on the girl's fourth birthday. He sishes to give his daughter \$4000 on her 18th.19th.20th and 21st birthdays, for atotal of \$16,000. Assuming 5% interest, what uniform annual investment will he have to make on girl's 8th through 17th birthdays?

2- Compute the value of D&E in the diagram. At an interest rate of 10%.

3- Consider the following two mutually exclusive alternatives:

Alt.	A	B
cost	\$100	\$150
Uniform annual benefit	16	24
Useful life, in years	00	20

Alternative B may be replaced with an identical item every 20 years at the same \$150 cost and will have the same \$24 uniform annual benefit. Using a 10% interest rate, and an annual cash flow analysis, determine which alternative should be selected.

4- Given the following data, use present worth analysis to find the best alternative, A, B, or C. Use 10% interest.

		2000	
Alternative	A	B	С
Initial cost	\$10,000	\$15,000	\$12,000
Annual benefit	6.000	10,000	5,000
Salvage value	1.000	-2,000	3,000
Useful life	2 years	3 years	4 years

Using the PW Method. Using the B/C ratio

5. The operating costs of a small electric generating unit are expected to remain the same (\$150,000 per year) if the effects of inflation are not considered. The best estimates indicate that the annual real (inflation-free) rate of interest will be 4% and the annual inflation e is 8%. If the generator is to be used 4 more years, what is the present equivalent of its operating costs? Solve using

i) Constant dollar analysis.

ii) Actual dollar analysis.

6)-A large heat treating oven (with appurtenances) for powder-coating automobile frames and large pieces of furniture was purchased for \$60,000.The estimated operating costs, maintenance costs, and salvage values are shown below.

Year	Operating	Maintenance	Salvage
	Cost,\$	Cost,\$	Value, \$
1	15,000	-3000	35.000
2	-17,000	-3000	30.000
3	-19,000	-3000	25.0000
4	-21,000	-3000	20,000
5	-23,000	-3000	15,000

Assuming the interest rate is 10%, determine:

i) The economic service life and the associated annual worthii) Determine the marginal total cost of the oven.

Determine the marginal total cost of the oven. **GOOD** LUCK

Note: A table of formulae are on the back of the questions if you need.

٠	Single Payment formulas:Compound amount: $F = P (1+i)^n = P (F/P,i,n)$
	Present worth: $P = F (1+i)^{-n} = F (P/F,i,n)$
۲	Uniform Series Formulas: Compound Amount: $F = A\{[(1+i)^n - 1]/i\}$ = A (F/A,i,n)
	Sinking Fund: $A = F \{i/[(1+i)^n - 1]\} = F (A/F,i,n)$
	Capital Recovery $A = P \{ [i(1+i)^n]/[(1+i)^n - 1] = P (A/P,i,n) \}$
	Present Worth:P = $A\{[(1+i)^n - 1]/[i(1+i)^n]\} = A(P/A,i,n)$
٢	Arithmetic Gradient Formulas:Present Worth P= G {[(1+i) ⁿ - i n - 1]/[i ² (1+i) ⁿ]} = G (P/G,i,n)
	Uniform Series A = G {[(1+i) ⁿ - i n -1]/[i (1+i) ⁿ - i]} = G (A/G,i,n)
۲	$\frac{Geometric \ Gradient \ Formulas:}{\text{If } i \neq g, P = A \left\{ [1 - (1+g)^n (1+i)^{-n}]/(i-g) \right\} = A \left(P/A, g, i, n \right)$
	If $i = g$, $P = A [n (1+i)^{-1}] = A (P/A,g,i,n)$

- Nominal interest rate per year, r : the annual interest rate without considering the effect of any compounding
- Effective interest rate per year, i_a : $i_a = (1 + r/m)^m - 1 = (1+i)^m - 1$ with i = r/m
- <u>Continuous compounding</u>, : r – one-period interest rate, n – number of periods

 $(\mathbf{P}/\mathbf{F},\mathbf{r},\mathbf{n})^{\text{inf}} = e^{-rn}$

 $(\mathbf{F}/\mathbf{P},\mathbf{r},\mathbf{n})^{\text{inf}} = e^{rn}$

Benha University College of Engineering at Benha

Model Answer of the Final Exam

Elaborated by: Dr. Mohamed Elsharnoby

problem1.

A man wants to help provide a college education for his young daughter. He can afford toinvest \$600/yr for the next 4 years, beginning on the girl's fourth birthday.He sishes to give his daughter \$4000 on her 18th,19th,20th, and 21st birthdays, for atotal of \$16,000. Assuming 5% interest, what uniform annual investment will he have to make on girl's 8th through 17th birthdays?

problem2-

Compute the value of D&E in the diagram. At an interest rate of 10%.

Solution

3- Consider the following two mutually exclusive alternatives:

Alt.	A	B
cost	\$100	\$150
Uniform annual benefi	it 16	24
Useful life, in years	00	20

Alternative B may be replaced with an identical item every 20 years at the same \$150 cost and will have the same \$24 uniform annual benefit. Using a 10% interest rate, and an annual cash flow analysis, determine which alternative should be selected.

Solution:

Alternative A	
EUAB - EUAC (for an inf. period)	= \$16 - \$100 (A/P, 10%, ∞)
	= \$16 - \$100 (0.10)
	= +\$6.00
Alternative B	
EUAB - EUAC (for 20 yr. period)	= \$24 - \$150 (A/P, 10%, 20)
	= \$24 - \$150 (0.1175)
	= +\$6.38
of the state of the test	

Choose Alternative B.

4- Given the following data, use present worth analysis to find the best alternative, A, B, or C. Use 10% interest.

Alternative	A	B	С
Initial cost	\$10,000	\$15,000	\$12,000
Annual benefit	6.000	10,000	5,000
Salvage value	1.000	-2,000	3,000
Useful life	2 years	3 years	4 years

Using the PW Method,, Using the B/C ratio

Solution

Choose Alternative B.

Benefit to cost ratio

	Single Payment			Equal Payns	ent Series		Gradier	Gradient Series	
N	Compound Amount Factor (F/P,i,N)	Present Worth Factor (P/F,i,N)	Compound Amount Factor (F/A,i,N)	Sinking Fund Factor (A/F,i,N)	Present Worth Factor (P/A,i _c N)	Capital Recovery Factor (A/P,i,N)	Gradient Uniform Series (A/G,i,N)	Gradient Present Worth (P)G,i,N)	N
1	1.1000	0.9091	1.0000	1.0000	0.9091	1.1000	0.0000	0.0000	1
2	1.2100	0.8264	2.1000	0.4762	1,7355	0.5762	0.4762	0.8264	2
3	1.3310	0.7513	3.3100	0.3021	2,4869	0.4021	0.9366	2.3291	3
4	1.4641	0.6830	4.6410	0.2155	3.1699	0.3155	1.3812	4.3781	4
5	1.6105	0.6209	6.1051	0.1638	3.7908	0.2638	1.8101	6.8618	5

10.0%

For alternative A EUAC_A = 10000x(A/P,10%,2) = 10000x0.5762 =5762 EUAB_A = 6000 + 1000 (A/F,10%,2) = 6000 +1000x0.4762 =6476.2 EUAB_A/EUAC_A= 6476.2/5762=1.12395 For alternative B EUAC_B = 15000x(A/P,10%,3) + 2000 (A/F,10%,3) = 15000x0.4021+2000x0.3021 =6031.5+604.2=6635.7 EUAB_B = 10000 EUAB_B = 10000 EUAB_B/EUAC_B= 10000/6635.7 =1.507 For alternative C EUAC_C = 12000x(A/P,10%,4) = 12000x0.3155 =3786 EUAB_C = 5000 + 3000 (A/F,10%,4) = 5000 +3000x0.2155 =5646.5 EUAB_C/EUAC_C = 5646.5/3786 =1.4914

5. The operating costs of a small electric generating unit are expected to remain the same (\$150,000 per year) if the effects of inflation are not considered. The best estimates indicate that the annual real (inflation-free) rate of interest will be 4% and the annual inflation e is 8%. If the generator is to be used 4 more years, what is the present equivalent of its operating costs? Solve using

i) Constant dollar analysis.

ii) Actual dollar analysis.

Problem # 5

Choose B

Using constant

P = A(P/A, 4%, 4)

P = 150000 * 3.6299 = \$ 544485

Using Actual dollar

i = Exact: i = i' + f + i' f = 12.32 %

If $i \neq g$, P = A {[1 - (1+g)ⁿ(1+i)⁻ⁿ]/(i-g)} = A (P/A,g,i,n)

If $i \neq f$, P = A(1+f) {[1 - (1+f)ⁿ(1+i)⁻ⁿ]/(i-f)} = A (P/A, f, i, n)

P = 150000 *1.08 * 3.361 = \$ 544484.

6)-A large heat treating oven (with appurtenances) for powder-coating automobile frames and large pieces of furniture was purchased for \$60,000. The estimated operating costs, maintenance costs, and salvage values are shown below.

Year	Operating	Maintenance	Salvage
	Cost,\$	Cost,\$	Value, \$
1	15,000	-3000	35.000
2	-17,000	-3000	30.000
3	-19,000	-3000	25.0000
4	-21,000	-3000	20,000
5	-23,000	-3000	15,000

Assuming the interest rate is 10%, determine:

- i) The economic service life and the associated annual worth
- ii) Determine the marginal total cost of the oven.

Year	Market	Loss in	Foregone	Operati	Maintenance	Salvage	Total
	value	Market	interest	ng	Cost,\$	Value, \$	Recovery
		value		Cost,\$			Cost
0	\$60000						
1	35.000	-\$25000	-\$6000	15,000	-3000	35.000	-\$49000
2	30.000	-\$5000	-\$3500	-17,000	-3000	30.000	-\$28500
3	25.0000	-\$5000	-\$3000	-19,000	-3000	25.0000	\$30000
4	20,000	-\$5000	-\$2500	-21,000	-3000	20,000	-\$31500
5	15,000	-\$5000	-\$2000	-23,000	-3000	15,000	\$33000

The life cost of one year is 49000

The EUAC for two years is = (49000+28500/(1+i))*(A/P,10%,2)= (49000+28500/(1+i))*5762= (49000 +25909)*0.5762=-\$43162.6

The EUAC for three years is = $(49000+28500/(1+i)+30000*(1+i)^{-2})* A/P,10\%,3)= (49000+25909+24793.3)*0.4021=-40090.3

The EUAC for four years is = (49000+28500/(1+i)+30000*(1+i)⁻²)*+31500*(1+i)⁻³)(A/P,10%,4)= (49000+25909+ 24793.3+23666.3)*0.3155=-\$38922

The EUAC for five years is = $(49000+28500/(1+i)+30000*(1+i)^{-2})*+31500*(1+i)^{-3}+33000*(1+i)^{-4})(A/P,10\%,5)=$ (49000+25909+24793.3+23666.3+22539.4)*0.2638=-\$38409

Economic life is 5 years

Year	Market	EUAC of	Foregone	Operati	Maintenance	Salvage	Total
	value	Capital	interest	ng	Cost,\$	Value, \$	Recovery
		recovery		Cost,\$			Cost
0	\$60000						
1	25.000	\$25000	\$6000	15 000	2000	25 000	\$49000
-	33.000	-323000	-30000	15,000	-3000	35.000	-343000
2	30.000	-\$5000	-\$3500	-17,000	-3000	30.000	-\$28500
3	25.0000	-\$5000	-\$3000	-19,000	-3000	25.0000	\$30000
4	20,000	-\$5000	-\$2500	-21,000	-3000	20,000	-\$31500
5	15,000	-\$5000	-\$2000	-23,000	-3000	15,000	\$33000

For one year

EUAC of Capital recovery for one year = -\$60000*(A/P,10%,1) +\$ 35000*(A/F,10%,1)

=-\$ 66000+\$ 35000 =-\$31000

EUAC of Capital recovery for two years =-\$ 60000*(A/P,10%,2) + \$ 30000*(A/F,10%,2)

=-\$ 60000*0.5762 +\$ 30000* 0.476 =-\$ 20292

EUAC of Capital recovery for three years = -\$60000*(A/P,10%,3) +\$ 25000*(A/F,10%,3)

=-\$ 60000*0.4021 +\$25000* 0.3021=-\$16573.5

EUAC of Capital recovery for four years =-\$ 60000*(A/P,10%,4) +\$ 20000*(A/F,10%,4)

=-\$ 60000*0.3155 +\$20000* 0.2155=-\$14620

EUAC of Capital recovery for five years =-\$ 60000*(A/P,10%,5) +\$ 15000*(A/F,10%,5)

=-\$ 60000*0..2638 +\$15000* 0.1638 =-\$13371

Year	Market	EUAC of	Operati	Maintenance	Total
	value	Capital	ng	Cost,\$	EUAC
		recovery	Cost,\$		
-					
0	\$60000				
1	35.000	-\$31000	15,000	-3000	-\$49000
2	30.000	-\$20292	-17,000	-3000	-\$40292
3	25.0000	-\$16573.5	-19,000	-3000	\$38573
4	20,000	-\$14620	-21,000	-3000	-\$38620
5	15,000	-\$13371	-23,000	-3000	\$39391

Year	Market	EUAC of	EUAC	Maintenance	Total
	value	Capital		Cost,\$	EUAC
		recovery	OP cost,\$		
0	\$60000				
0	300000				
1	35.000	-\$31000	15,000	-3000	-\$49000
2	30.000	-\$20292	-15,932.4	-3000	-\$39224.4
3	25.0000	-\$16573.5	-16873.2	-3000	\$36446.7
4	20,000	-\$14620	-17636	-3000	-\$35256
5	15,000	-\$13371	-18620	-3000	\$34991

Economic life is 5 years