Benha University
College of Engineering at Banha
Mechanical Eng. Dept.
Subject :Automatic Control (M 1352)
Questions For Final Examination

> نموذج أسئلة و اجابة

Examiner : Dr. Mohamed Elsharnoby
Time : 180 min .
Attempt all questions, Number of q 1uestions $=4$, Number of pages $=2$
Figure 1 shows a system with two inputs and two outputs. Derive $C_{1}(\mathrm{~s}) / R_{1}(\mathrm{~s}), C_{1}(\mathrm{~s}) / R_{2}(\mathrm{~s}), C_{2}(\mathrm{~s}) / R_{1}(\mathrm{~s})$, and $C_{2}(\mathrm{~s}) / R_{2}(\mathrm{~s})$. (In deriving outputs for $R_{1}(\mathrm{~s})$, assume that $R_{2}(\mathrm{~s})$ is zero, and vice versa.

Figure 1
1-b) If the transfer function of a system is given by:

$$
\frac{Y(s)}{U(s)}=\frac{2 s^{3}+s^{2}+s+2}{s^{3}+4 s^{2}+5 s+2}
$$

i) Obtain a state-space equation and output equation for the system defined by
ii) Draw a signal flow graph represents this system.

2-a) Figure 2-a shows a mechanical vibratory system. When 2 lb of force (step input) is applied to the system, the mass oscillates, as shown in Figure 2-b. Determine m, b, and k of the system from this response curve. The displacement x is measured from the equilibrium position.

(a)

(b)

Figure 2
2-b) . Consider a feedback system shown in figure 3
For $G(s)=\frac{(4-s)}{(s-1)(s+4)}$, we use a proportional controller with $K>0$

Figure 3
i) Determine the range of K for which the feedback systmis stable.
ii) Draw the Nyqusit plot for $\mathrm{K}=1$.
iii) Design $\mathrm{K}>0$ such that the phase margin is maximized.

Hint: You may use the following identity $\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}$
3-a) Sketch the root loci for the system shown in Figure 4

Figure 4
3-b) Consider a feedback system in figure 3 , a phase-lead compensator with $G_{c}(s)=\frac{1+0.4 \mathrm{~s}}{1+0.04 \mathrm{~s}}$ is placed in series with the plant $G(s)=\frac{500}{(s+1)(s+5)(s+10)}$, compute the gain and phase margin
a. G.M. $=\infty \mathrm{dB}, P . M .=60^{\circ}$
b. $G . M .=20.5 \mathrm{~dB}$, P.M. -47.8°
c G.M. $=8.6 \mathrm{~dB}, P . M .=33.6^{\circ}$
d. Closed-loop system is unstable (verify your answer).

4-a) Consider the feedback system depicted in Figure 3, where
$G(s)=\frac{1}{s(s+4)^{2}}$
A suitable compensation $G c(s)$ for this system that satisfies the specifications:
(i) P.O. $<20 \%$, and (ii) velocity error constant $\mathrm{K}_{\mathrm{v}} \succ 10$, is which of the following:
a. $G_{c}(s)=\frac{s+4}{(s+1)}$
b. $G_{c}(s)=\frac{160(10 s+1)}{200 s+1}$
c. $G_{c}(s)=\frac{24(s+1)}{s+4}$
d. None of the above
(show your work)
4-b) Given the straight line Bode diagram of magnitude in figure 5, find the corresponding transfer function.

Figure 5-a

Figure 5-b

GOOD LUCK

Benha University

College of Engineering at Banha

Mechanical Eng. Dept.
Subject :Automatic Control
Model Answer of the Final Examination
Elaborated by: Dr. Mohamed Elsharnoby
$4^{\text {th }}$ Year Mechanics
May 14/2018

أستاذ المادة : د. عحمد عبد اللطيف الشرنوبى
Figure 1 shows a system with two inputs and two outputs. Derive $C_{1}(\mathrm{~s}) / R_{1}(\mathrm{~s}), C_{1}(\mathrm{~s}) / R_{2}(\mathrm{~s}), C_{2}(\mathrm{~s}) / R_{1}(\mathrm{~s})$, and $C_{2}(\mathrm{~s}) / R_{2}(\mathrm{~s})$. (In deriving outputs for $R_{1}(\mathrm{~s})$, assume that $R_{2}(\mathrm{~s})$ is zero, and vice versa.

Figure 1

Solution. From the figure, we obtain

$$
\begin{align*}
& C_{1}=G_{1}\left(R_{1}-G_{3} C_{2}\right) \tag{2-52}\\
& C_{2}=G_{4}\left(R_{2}-G_{2} C_{1}\right) \tag{2-53}
\end{align*}
$$

By substituting Equation (2-53) into Equation (2-52), we obtain

$$
\begin{equation*}
C_{1}=G_{1}\left[R_{1}-G_{3} G_{4}\left(R_{2}-G_{2} C_{1}\right)\right] \tag{2-54}
\end{equation*}
$$

By substituting Equation (2-52) into Equation (2-53), we get

$$
\begin{equation*}
C_{2}=G_{4}\left[R_{2}-G_{2} G_{1}\left(R_{1}-G_{3} C_{2}\right)\right] \tag{2-55}
\end{equation*}
$$

Solving Equation (2-54) for C_{1}, we obtain

$$
\begin{equation*}
C_{1}=\frac{G_{1} R_{1}-G_{1} G_{3} G_{4} R_{2}}{1-G_{1} G_{2} G_{3} G_{4}} \tag{2-56}
\end{equation*}
$$

Solving Equation (2-55) for C_{2} gives

$$
\begin{equation*}
C_{2}=\frac{-G_{1} G_{2} G_{4} R_{1}+G_{4} R_{2}}{1-G_{1} G_{2} G_{3} G_{4}} \tag{2-57}
\end{equation*}
$$

Equations (2-56) and (2-57) can be combined in the form of the transfer matrix as follows:

$$
\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{G_{1}}{1-G_{1} G_{2} G_{3} G_{4}} & -\frac{G_{1} G_{3} G_{4}}{1-G_{1} G_{2} G_{3} G_{4}} \\
-\frac{G_{1} G_{2} G_{4}}{1-G_{1} G_{2} G_{3} G_{4}} & \frac{G_{4}}{1-G_{1} G_{2} G_{3} G_{4}}
\end{array}\right]\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right]
$$

Then the transfer functions $C_{1}(s) / R_{1}(s), C_{1}(s) / R_{2}(s), C_{2}(s) / R_{1}(s)$ and $C_{2}(s) / R_{2}(s)$ can be obtained as follows:

$$
\begin{array}{ll}
\frac{C_{1}(s)}{R_{1}(s)}=\frac{G_{1}}{1-G_{1} G_{2} G_{3} G_{4}}, & \frac{C_{1}(s)}{R_{2}(s)}=-\frac{G_{1} G_{3} G_{4}}{1-G_{1} G_{2} G_{3} G_{4}} \\
\frac{C_{2}(s)}{R_{1}(s)}=-\frac{G_{1} G_{2} G_{4}}{1-G_{1} G_{2} G_{3} G_{4}}, & \frac{C_{2}(s)}{R_{2}(s)}=\frac{G_{4}}{1-G_{1} G_{2} G_{3} G_{4}}
\end{array}
$$

Note that Equations (2-56) and (2-57) give responses C_{1} and C_{2}, respectively, when both inputs R_{1} and R_{2} are present.

Notice that when $R_{2}(s)=0$, the original block diagram can be simplified to those shown in Figures 2-25(a) and (b). Similarly, when $R_{1}(s)=0$, the original block diagram can be simplified to those shown in Figures 2-25(c) and (d). From these simplified block diagrams we can also ob$\operatorname{tain} C_{1}(s) / R_{1}(s), C_{2}(s) / R_{1}(s), C_{1}(s) / R_{2}(s)$, and $C_{2}(s) / R_{2}(s)$, as shown to the right of each corresponding block diagram.

1-b)
1-b) If the transfer function of a system is given by:

$$
\frac{Y(s)}{U(s)}=\frac{2 s^{3}+s^{2}+s+2}{s^{3}+4 s^{2}+5 s+2}
$$

iii) Obtain a state-space equation and output equation for the system defined by
iv) Draw a signal flow graph represents this system.

$$
\begin{array}{lll}
a_{1}=4, & a_{2}=5, & a_{3}=2 \\
b_{0}=2, & b_{1}=1, & b_{2}=1,
\end{array} b_{3}=2
$$

Referring to Equation (2-35), we have

$$
\begin{aligned}
\beta_{0} & =b_{0}=2 \\
\beta_{1} & =b_{1}-a_{1} \beta_{0}=1-4 \times 2=-7 \\
\beta_{2} & =b_{2}-a_{1} \beta_{1}-a_{2} \beta_{0}=1-4 \times(-7)-5 \times 2=19 \\
\beta_{3} & =b_{3}-a_{1} \beta_{2}-a_{2} \beta_{1}-a_{3} \beta_{0} \\
& =2-4 \times 19-5 \times(-7)-2 \times 2=-43
\end{aligned}
$$

Referring to Equation (2-34), we define

$$
\begin{aligned}
& x_{1}=y-\beta_{0} u=y-2 u \\
& x_{2}=\dot{x}_{1}-\beta_{1} u=\dot{x}_{1}+7 u \\
& x_{3}=\dot{x}_{2}-\beta_{2} u=\dot{x}_{2}-19 u
\end{aligned}
$$

Then referring to Equation (2-36),

$$
\begin{aligned}
\dot{x}_{1} & =x_{2}-7 u \\
\dot{x}_{2} & =x_{3}+19 u \\
\dot{x}_{3} & =-a_{3} x_{1}-a_{2} x_{2}-a_{1} x_{3}+\beta_{3} u \\
& =-2 x_{1}-5 x_{2}-4 x_{3}-43 u
\end{aligned}
$$

Hence, the state-space representation of the system is

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & -5 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{r}
-7 \\
19 \\
-43
\end{array}\right] u \\
y & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+2 u
\end{aligned}
$$

Another solution
$\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{U}(\mathrm{s})}=2-\frac{7 \mathrm{~s}^{2}+9 \mathrm{~s}+2}{\mathrm{~S}^{3}+4 \mathrm{~s}^{2}+5 \mathrm{~s}+2}$
$Y(s)=2 U(s)-\frac{7 s^{2}+9 s+2}{S^{3}+4 s^{2}+5 s+2} U(s)$
$\mathrm{Y}(\mathrm{s})=2 \mathrm{U}(\mathrm{s})+\mathrm{Z}(\mathrm{s})$
$Z(s)=-\frac{7 s^{2}+9 s+2}{S^{3}+4 s^{2}+5 s+2} U(s)$
$\mathrm{Z}(\mathrm{s})=-\frac{\frac{7}{\mathrm{~s}}+\frac{9}{\mathrm{~s}^{2}}+\frac{2}{\mathrm{~s}^{3}}}{1+\frac{4}{\mathrm{~s}}+\frac{5}{\mathrm{~s}^{2}}+\frac{2}{\mathrm{~s}^{3}}} \mathrm{U}(\mathrm{s})$
$\mathrm{X}_{1}=\mathrm{z}$
$\mathrm{X}_{2}=\mathrm{z}=\mathrm{X}_{1}$
$\mathrm{X}_{3}=\mathrm{z}=\mathrm{X}_{2}$
$\dot{x}_{3}=\stackrel{\cdots}{z}=-4 x_{3}-5 x_{2}-2 x_{1}+u$

iii) the state space representation of the system.

$$
\begin{aligned}
& \dot{\mathbf{X}}=\mathbf{A X}+\mathbf{B U}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-2 & -5 & -4
\end{array}\right] \mathbf{X}+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \mathbf{U} \\
& \mathbf{Y}=\mathbf{C X}+\mathbf{D U}=\left[\begin{array}{lll}
-2 & -9 & -7
\end{array}\right] \mathbf{X}+2 \mathbf{U}
\end{aligned}
$$

2-a)
Solution. The transfer function of this system is

$$
\frac{X(s)}{P(s)}=\frac{1}{m s^{2}+b s+k}
$$

Since

$$
P(s)=\frac{2}{s}
$$

we obtain

$$
X(s)=\frac{2}{s\left(m s^{2}+b s+k\right)}
$$

It follows that the steady-state value of x is

$$
x(\infty)=\lim _{s \rightarrow 0} s X(s)=\frac{2}{k}=0.1 \mathrm{ft}
$$

(a)
(a) Mechanical vibratory system;

(b)
(b) step-response curve.

Hence

$$
k=20 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft}
$$

Note that $M_{p}=9.5 \%$ corresponds to $\zeta=0.6$. The peak time t_{p} is given by

$$
t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=\frac{\pi}{0.8 \omega_{n}}
$$

The experimental curve shows that $t_{p}=2 \mathrm{sec}$. Therefore,

$$
\omega_{n}=\frac{3.14}{2 \times 0.8}=1.96 \mathrm{rad} / \mathrm{sec}
$$

Since $\omega_{n}^{2}=k / m=20 / m$, we obtain

$$
m=\frac{20}{\omega_{n}^{2}}=\frac{20}{1.96^{2}}=5.2 \text { slugs }=167 \mathrm{lb}
$$

$\left(\right.$ Note that 1 slug $=1 \mathrm{lb}_{\mathrm{f}}-\sec ^{2} / \mathrm{ft}$.) Then b is determined from
or

$$
2 \zeta \omega_{n}=\frac{b}{m}
$$

$$
b=2 \zeta \omega_{n} m=2 \times 0.6 \times 1.96 \times 5.2=12.2 \mathrm{lb}_{\mathrm{f}} / \mathrm{ft} / \mathrm{sec}
$$

2-b)
i) The characteristic equation is given by $1+K G=0$

This is reduced to $\mathrm{S}^{2}+(3-\mathrm{k}) \mathrm{S}+4(\mathrm{~K}-1)$
All coefficient should be +ve
$\therefore 1 \leq K \leq 3$
ii) $G_{P}(i \omega)=\frac{4-i \omega}{\left(-4-\omega^{2}\right)+3 i \omega}=\frac{-4+i \omega}{\left(4+\omega^{2}\right)-3 i \omega}$
$G_{P}(i \omega)=\frac{-16-7 \omega^{2}+i\left(\omega^{3}-8 \omega\right)}{\left(4+\omega^{2}\right)^{2}+9 \omega^{2}}$
Intersection with real for $\omega=0$ or $\sqrt{8}$, at -1 and -0.3333 respectively

Imaginary

G(iw)

$$
\phi=\tan ^{-1} \frac{\omega^{3}-8 \omega}{-16-7 \omega^{2}}
$$

The maximum phase will not change with K but the value of $|G(i \omega)|$
Let $\phi=\tan ^{-1} x$ for $\max \phi, \frac{d \phi}{d \omega}=\frac{d \phi}{d x} \frac{d x}{d \omega}=\frac{1}{1+x^{2}} \frac{d x}{d \omega}=0 \Rightarrow \frac{d x}{d \omega}=0$
$\frac{d x}{d \omega}=0$ for $7 \omega^{4}+104 \omega^{2}-128=0 \Rightarrow \omega^{2}=\frac{8}{7}, \Rightarrow \omega=1.069 s^{-1}$
$G(i 1.069)=-0.6533-0.1995 i$
$|G(i \omega)|=0.68308 \quad \therefore k=1.464$ to get tha max phase margin which equal to $\phi=\tan ^{-1} \frac{0.1995}{0.6533}$
3-a) The open-loop poles are located at $s=0, s=-1, s=-2+j 3$, and $s=-2-j 3$.A root locus exists on the real axis between points $s=0$ and $s=-1$. The angles of the asymptotes are found as follows:

$$
\text { Angles of asymptotes }=\frac{ \pm 180^{\circ}(2 k+1)}{4}=45^{\circ},-45^{\circ}, 135^{\circ},-135^{\circ}
$$

(a)

(b)
(a) Control system; (b) root-locus plot.

The intersection of the asymptotes and the real axis is found from

$$
s=-\frac{0+1+2+2}{4}=-1.25
$$

The breakaway and break-in points are found from $d K / d s=0$. Noting that

$$
K=-s(s+1)\left(s^{2}+4 s+13\right)=-\left(s^{4}+5 s^{3}+17 s^{2}+13 s\right)
$$

we have

$$
\frac{d K}{d s}=-\left(4 s^{3}+15 s^{2}+34 s+13\right)=0
$$

from which we get

$$
s=-0.467, \quad s=-1.642+j 2.067, \quad s=-1.642-j 2.067
$$

Point $s=-0.467$ is on a root locus. Therefore, it is an actual breakaway point. The gain values K corresponding to points $s=-1.642 \pm j 2.067$ are complex quantities. Since the gain values are not real positive, these points are neither breakaway nor break-in points.

The angle of departure from the complex pole in the upper-half s plane is

$$
\theta=180^{\circ}-123.69^{\circ}-108.44^{\circ}-90^{\circ}
$$

or

$$
\theta=-142.13^{\circ}
$$

Next we shall find the points where root loci may cross the $j \omega$ axis. Since the characteristic equation is

$$
s^{4}+5 s^{3}+17 s^{2}+13 s+K=0
$$

by substituting $s=j \omega$ into it we obtain

$$
(j \omega)^{4}+5(j \omega)^{3}+17(j \omega)^{2}+13(j \omega)+K=0
$$

or

$$
\left(K+\omega^{4}-17 \omega^{2}\right)+j \omega\left(13-5 \omega^{2}\right)=0
$$

from which we obtain

$$
\omega= \pm 1.6125, \quad K=37.44 \quad \text { or } \quad \omega=0, \quad K=0
$$

The root-locus branches that extend to the right-half s plane cross the imaginary axis at $\omega= \pm 1.6125$. Also, the root-locus branch on the real axis touches the imaginary axis at $\omega=0$. Figure 6-68(b) shows a sketch of the root loci for the system. Notice that each root-locus branch that extends to the right-half s plane crosses its own asymptote.

Consider a feedback system in which a phase-lead compensator

$$
G_{c}(s)=\frac{1+0.4 s}{1+0.04 s}
$$

is placed in series with the plant

$$
G(s)=\frac{500}{(s+1)(s+5)(s+10)} .
$$

The feedback system is a negative unity feedback control system shown in Figure 10.43.
Compute the gain and phase margin.

a. $G . M .=\infty \mathrm{dB}, P . M .=60^{\circ}$
b. $G . M .=20.5 \mathrm{~dB}$, P.M. -47.8°
c $G . M .=8.6 \mathrm{~dB}, P . M .=33.6^{\circ}$
d. Closed-loop system is unstable
(verify your answer).
4-a)Consider the feedback system depicted in Figure 10.43, where

$$
G(s)=\frac{1}{s(s+4)^{2}} .
$$

A suitable compensation $G_{c}(s)$ for this system that satisfies the specifications:
(i) P.O. $<20 \%$, and (ii) velocity error constant K_{v} a 10 , is which of the
following:
a. $G_{c}(s)=\frac{s+4}{(s+1)}$
b. $G_{\mathrm{c}}(s)=\frac{160(10 s+1)}{200 s+1}$
c. $G_{c}(s)=\frac{24(s+1)}{s+4}$
d. None of the above
(verify your answer)
The correct answer is (b)

(a)

For (a) $\mathrm{T}(\mathrm{s})=\frac{0.8\left(\frac{\mathrm{~s}}{0.2}+1\right)}{\mathrm{s}\left(\frac{\mathrm{s}}{4}+1\right)^{2}}=\frac{(4 s+0.8)}{\frac{s}{16}(s+4)^{2}}=\frac{64(s+0.2)}{s(s+4)^{2}}$

For (b) $\mathrm{T}(\mathrm{s})=\frac{\mathrm{s}}{2\left(\frac{\mathrm{~s}}{20}+1\right)\left(\frac{\mathrm{s}}{50}+1\right)}=\frac{500 s}{(s+20)(s+50)}$

