1. a. Design a common bus system between 4 registers (R1, R2, R3 and R4) each of 4-bits using tri-state buffers and decoders.

Answer:

b. Starting from an initial value of $R=11001001$, determine the sequence of binary values in R after a logical shift-left, followed by a circular shift-right, followed by a logical shift-right and a circular shift-left.
Answer:

Micro-operation	R
Initially	11001001
R - shl R	10010010
R < cir R	01001001
R < shr R	00100100
R ¢ cil R	01001000

c. A digital computer has a common BUS system for 4 registers of 16-bit each; this bus system uses MUXs and a decoder to allow data transfer between any two registers at a time. For this system do the following:
i. How many multiplexers are there in the bus? 16 MUXs
ii. What is the size of each multiplexer?

4X1 MUX's
2. Design an arithmetic circuit with one selection variable S and two n-bit data inputs A and B . The circuit generates the following 4 arithmetic operations in conjunction with the input carry $C_{i n} . \underline{\text { Draw }}$ the logic diagram for the first two stages.

S	$C_{\text {in }}=0$		$C_{\text {in }}=1$	
0	$\mathrm{D}=\mathrm{A}+\mathrm{B} \quad$ (add)	$\mathrm{D}=\mathrm{A}+1 \quad$ (increment)		
1	$\mathrm{D}=\mathrm{A}-1 \quad$ (decrement)	$\mathrm{D}=\mathrm{A}+\mathrm{B}{ }^{\prime}+1 \quad$ (subtract)		

Answer:

3. The following control inputs are active in the bus system shown in Fig.(1). For each case, specify the register transfer that will be executed during the next clock transition

	S2	S1	S0	LD of register	Memory	Adder
a.	1	1	1	IR	Read	--
b.	1	1	0	PC	--	--
c.	1	0	0	DR	Write	--
d.	0	0	0	AC	--	Add

Answer:

Question	S2	S1	S0	LD of register	Memory	Adder	Solution
A	1	1	1	IR	Read	---	IR $<--$ M [AR]
B	1	1	0	PC	---	---	PC $<--$ TR
C	1	0	0	DR	Write	---	DR $<-$ AC, M [AR] $<--~ A C ~$
d	0	0	0	AC	---	Add	AC $<-$ AC + DR

4. Consider the basic computer registers connected to a common bus system shown in Fig.(1). For each indicated micro-instruction, complete the following table:

Microinstruction		Bus select			Source Register	Destination Register				Memory	
		S2	S1	S0		Name	LD	INR	CLR	Read	Write
AR <	PC	0	1	0	PC	AR	1	0	0	0	0
PC <	PC+1	0	1	0	PC	PC	0	1	0	0	0
IR $¢$	M[AR]	1	1	1	M	IR	1	0	0	1	0
AR <	IR	1	0	1	IR	AR	1	0	0	0	0
DR ¢	M[AR]	0	1	1	M	DR	1	0	0	1	0
TR <	0	0	0	0	TR	TR	0	0	1	0	0

5. The register transfer statements for a register R and the memory in a computer are as follows (the X's are control functions)

| $X_{3}^{\prime} X_{1}:$ | $\mathrm{R} \longleftarrow \mathrm{M}[\mathrm{AR}]$ | Read Memory word into R |
| ---: | :--- | :--- | :--- |
| $X_{1}^{\prime} X_{2}:$ | R Ł AC | Transfer AC to R |
| $X_{1}^{\prime} X_{3}:$ | $\mathrm{M}[\mathrm{AR}] \leftarrow \mathrm{R}$ | Write R to Memory |

The memory has data inputs, data outputs, address inputs, and control inputs to read and write. Draw the hardware implementation of \mathbf{R} and the memory in block diagram form.
Answer:

