Benha University
College of Engineering at Benha
Mechanical Eng. Dept.
$4^{\text {th }}$ Year Power Mechanics Subject
Subject:Gas dynamics 2012/2013

Model Answer of the Final Exam

Date:1/6/2013

Elaborated by: Dr. Mohamed Elsharnoby

$1-\mathrm{a} 1-\mathrm{a})$.The equation relating the relative change in area with the relative change in velocity is given by:

$$
\frac{d A}{A}=\left(M^{2}-1\right) \frac{d V}{V}
$$

which may alternatively be written as:

$$
\frac{d A}{d V}=\left(M^{2}-1\right) \frac{A}{V}
$$

Because A and V are positive, it may be concluded from the above iwo equations that:

1. If $M<1$, i.e., if the flow is subsonic, then $d A$ has the opposite sign to $d t$. i.e., decreasing the area increases the velocity and vice versa.
2. If $M>1$, i.e., if the flow is supersonic, then $d A$ has the same sign as $d l$ i.e., decreasing the area decreases the velocity and vice versa.
3. If $M=1$ then $d A / d V=0$ and A reaches an extremum. From (1) and (2) it follows that when $M=1, A$ must be a minimum.
b)

Fig. 1
The absolute temperature at section 1 is $\mathrm{T}_{1}=273+15=288 \mathrm{~K}$
The Mach number at section 1 is $\mathrm{M}_{1}=0.4409$
The absolute temperature at section 2is $\mathrm{T}_{2}=273-10=263 \mathrm{~K}$
From the energy equation
$\mathrm{m} / \mathrm{st}_{1}+\frac{\mathrm{v}_{1}^{2}}{2}=\mathrm{C}_{\mathrm{p}} \mathrm{T}_{2}+\frac{\mathrm{v}_{2}^{2}}{2} \Rightarrow \mathrm{v}_{2}=218$
The Mach number at section 2 is $\mathrm{M}_{2}=0.671$
$\rho_{1}=\frac{p_{1}}{R_{1}}=1.209 \mathrm{~kg} / \mathrm{m}^{3}$ from the equation $\frac{\rho_{2}}{\rho_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{1}{\gamma-1}}=0.7969$
$\rightarrow \therefore \rho_{2}=0.9635 \mathrm{~kg} / \mathrm{m}^{3}$
From the continuity equation $\rho_{1} v_{1} A_{1}=\rho_{2} v_{2} A_{2} \rightarrow \frac{A_{2}}{A_{1}}=0.8634$
c) $\rho_{1}=\frac{\mathrm{p}_{1}}{\mathrm{RT}_{1}}=0.4598, \quad \mathrm{~V}_{1}=872.5 \mathrm{~m} / \mathrm{s}$
the mass flow rate $\mathrm{m}=\rho_{1} \mathrm{v}_{1} \mathrm{~A}_{1}=0.9628 \mathrm{~kg} / \mathrm{sec}$.
For $\mathrm{M}_{1}=2.5$
$\mathrm{M}_{1}=2.5 \rightarrow \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{1}^{*}}=2.6367, \frac{p_{1}}{p_{o 1}}=0.0585$ to obtain the Mach number before the shock $\mathrm{M}_{2 \mathrm{n} 1}$ we get $\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}^{*}}=\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{1}^{*}}=1.978 \rightarrow$ from table $\mathrm{M}_{2 \mathrm{n} 1}=2.185 \rightarrow$ from the normal shock table we get the Mach number after the shock $\mathrm{M}_{2 \mathrm{n} 2}=0.549$, also we get $\frac{\mathrm{P}_{\mathrm{o} 2}}{\mathrm{P}_{\mathrm{o} 1}}=0.635$, we have $\mathrm{P}_{\mathrm{o} 1}=683,76 \mathrm{kPa}$ $\rightarrow \therefore \mathrm{P}_{\mathrm{o} 2}=414.2 \mathrm{kPa}$
From table A 1 for $\mathrm{M}_{2 \mathrm{n} 2}=0.549$ we $\operatorname{get} \frac{\mathrm{A}_{2}}{\mathrm{~A}_{2}^{*}}=1.257$
$\frac{\mathrm{A}_{3}}{\mathrm{~A}_{2}^{*}}=\frac{\mathrm{A}_{3}}{\mathrm{~A}_{2}} \frac{\mathrm{~A}_{2}}{\mathrm{~A}_{2}^{*}}=2.235$
The Mach number at section 3 is $\mathrm{M}_{3}=0.25$
The stagnation pressure at section 3 is $\mathrm{P}_{\mathrm{o} 3}=414.2 \mathrm{kPa}$

Fig. 2
2-a) Rayleigh flow is one-dimensional frictionless flow in constant area duct with heat addition and removal

Figure3. Rayleigh curve
Heating always pushes the flow towards the sonic conditions and vice versa. This is clear on the Rayleigh curve shown above In detail we can conclude the following:

1. For supersonic flow in region 1, i.e., $M_{1}>1$, when heat is added
a. Mach number decreases, $M_{2}<M_{1}$
b. Pressure increases, $p_{2}>p_{1}$
c. Temperature increases, $T_{2}>T_{1}$
d. Total temperature increases, $T_{o_{2}}>T_{o_{1}}$
e. Total pressure decreases, $p_{o_{2}}<p_{o_{1}}$
f. Velocity decreases, $u_{2}<u_{1}$
2. For subsonic flow in region 1, i.e., $M_{1}<1$, when heat is added
a. Mach number increases, $M_{2}>M_{1}$
b. Pressure decreases, $p_{2}<p_{1}$
c. Temperature increases for $M_{1}<\gamma^{-1 / 2}$ and decreases for $M_{1}>\gamma^{-1 / 2}$
d. Total temperature increases, $T_{o_{2}}>T_{o_{1}}$
e. Total pressure decreases, $p_{o_{2}}<p_{o_{1}}$
f. Velocity increases, $u_{2}>u_{1}$

For heat extraction (cooling of the flow), all of the above trends are opposite.
From the development here, it is important to note that heat addition always drives the Mach numbers toward 1 , decelerating a supersonic flow and accelerating

2-b) The situation under consideration is shown in Fig. 4

Fig. 4
Now for Mach number 2.8 using the relation.

$$
\begin{gathered}
\begin{array}{c}
T, \\
T
\end{array}=1+\gamma-1 M^{2}-1+0.2 M^{2} \\
\text { Or using the software or isentropic tables gives } T_{01} / T_{1} \cdots 2.568 \text {. Hence } \\
T_{(1,1}=2.568 \times(273+10)=726.7 \mathrm{~K}
\end{gathered}
$$

> Next, using the relations given above or the tables or the sofiware for trictiorless flow in a constant area duet with heat exchange gives: for $M=2.8$:

$$
\Gamma^{P} 0.2004, \quad \frac{T}{T}=0.3149, \quad \frac{T_{0}}{T_{0}}=0.6738
$$

1or M: 1.3:

$$
\begin{array}{cccccc}
\Gamma & 0.7130 & T & T & 0.8592 & T_{0} \\
r^{+} & 0.71 .9580
\end{array}
$$

Using these values gives:

$$
p_{2}=\frac{p_{2} / p^{*}}{p_{1} / p^{*}} p_{1}=\frac{0.7130}{0.2004} \times 100=355.8 \mathrm{kPa}
$$

and: $\quad T_{:}=\frac{T_{2} / T^{*}}{T_{1} / T^{*}} T_{1}=\frac{0.8592}{0.3149} \times 283=772.2 \mathrm{~K}=499.2^{\circ} \mathrm{C}$
Therefore, the pressure and temperature of the air at the outlet to the duct are 355.8 kPa and $499.2^{\circ} \mathrm{C}$ respectively.

When the maximum amount of heat is transferred to the flow, the Mach number at exit becomes one, then the total temperature T_{02} will equal T_{0}^{*}. Hence in this case:

$$
\mathrm{T}_{02}=\frac{\mathrm{T}_{01}}{\mathrm{~T}_{01} / \mathrm{T}_{0}^{*}}=\frac{726.7}{0.6738}=1078.5 \mathrm{~K}
$$

but $\quad \mathrm{q}=\mathrm{Cp}\left(\mathrm{T}_{02}-\mathrm{T}_{01}\right)=1.007(1078.5-726.7)=354.3 \mathrm{~kJ} / \mathrm{kg}$
it having been assumed that $\mathrm{Cp}=1.007 \mathrm{~kJ} / \mathrm{kg}$.
Also when the maximum amount of heat has been transferred:
and:

$$
\begin{gathered}
p_{2}=p^{*}=\frac{p_{1}}{p_{1} / p^{*}}=\frac{100.7}{0.2004}=499.0 \mathrm{kPa} \\
T_{2}=T^{*}=\frac{T_{1}}{T_{1} / T^{*}}=\frac{283}{0.3149}=898.7 \mathrm{~K}=625.7^{\circ} \mathrm{C}
\end{gathered}
$$

Therefore, when the maximum amount of heat is transferred, the is 354.3 kJ for every kilogram of air flowing through the duct and : heat added circumstances the pressure and temperature of the air at the outlet to under these 499.0 kPa and $625.7^{\circ} \mathrm{C}$ respectively. the duct are

3-a) Fanno flow is the one-dimensional adiabatic flow in a constant area duct with friction effect. The mach number variation for supersonic inlet flow with the duct length is shown below. When $\mathrm{L}=$ L^{*} Mach number reaches unity at exit ; but when L increases ther exist a normal shock wave in the duct which moves forward as L increases more and more; this is shown in Fig.4.

Figure 4
b) 1-The flow situation under consideration is shown in the figure 5 below

Figure 5

At the exit Mach number is 1 the area at exit is considered to the critical area so

$$
\mathrm{T}_{\mathrm{e}}=\mathrm{T}^{*} . \text { Since } \mathrm{T}_{\mathrm{o}}=100+273=373 \text { so } \mathrm{T}_{\mathrm{e}}=310.8 \mathrm{~K}
$$

The exit speed $\mathrm{V}_{\mathrm{e}}=353.5 \mathrm{~m} / \mathrm{s}$
The mass flow rate $\dot{\mathrm{m}}=\rho_{\mathrm{e}} \mathrm{v}_{\mathrm{e}} \mathrm{A}_{\mathrm{e}} \rightarrow \rho_{\mathrm{e}}=1.44 \mathrm{~kg} / \mathrm{s}$
$\mathrm{P}_{\mathrm{e}}=\rho_{\mathrm{e}} \mathrm{RT}_{\mathrm{e}} \quad \therefore \mathrm{P}_{\mathrm{e}}=146.2 \mathrm{kPa}=\mathrm{P}^{*} \rightarrow \mathrm{P}_{\mathrm{oe}}=276.75 \mathrm{kPa}$
The flow between section 2 and the exit is isentropic so $P_{o e}=P_{02}$ and $\frac{A_{2}}{A_{e}}=\frac{A_{2}}{A^{*}}$
$\frac{\mathrm{A}_{2}}{\mathrm{~A}^{*}}=1.44 \rightarrow$ from table $\mathrm{M}_{2}=0.454$ and $\frac{\mathrm{p}_{2}}{\mathrm{p}_{\mathrm{o} 2}}=0.868 \therefore \mathrm{p}_{2}=240.2 \mathrm{kPa}$
\rightarrow from table and for $\mathrm{M}_{2}=0.454$ we get $\frac{\overline{\mathrm{f}}_{2}^{*}}{\mathrm{D}}=\frac{4 \mathrm{fL}_{2}^{*}}{\mathrm{D}}=1.57, \frac{\mathrm{p}_{2}}{\mathrm{p}^{*}}=2.36$
$\frac{4 \mathrm{fL}_{1}^{*}}{\mathrm{D}}-\frac{4 \mathrm{fL}_{2}^{*}}{\mathrm{D}}=\frac{4 \mathrm{f}\left(\mathrm{L}_{1}^{*}-\mathrm{L}_{2}^{*}\right)}{\mathrm{D}}=\frac{4 \mathrm{f}(9)}{\mathrm{D}}=3.75 \rightarrow \frac{4 \mathrm{fL}_{1}^{*}}{\mathrm{D}}=5.32$
\rightarrow from table we get $\mathrm{M}_{1}=0.3$ and $\frac{\mathrm{p}_{1}}{\mathrm{p}^{*}}=3.6191$
$\mathrm{P}_{1}=\left(\frac{\mathrm{p}_{1}}{\mathrm{p}^{*}} / \frac{\mathrm{p}_{2}}{\mathrm{p}^{*}}\right) \times \mathrm{p}_{2} \rightarrow \mathrm{P}_{1}=368.35 \mathrm{kPa}$
The flow between the tank and section 1 is isentropic, so the pressure inside the tank equal to the stagnation pressure at section $1 \mathrm{P}_{\mathrm{tank}}=\mathrm{P}_{\mathrm{o} 1}=392.07 \mathrm{kPa}$

4-a) The assumptions for derivation of the linearzed velocity potential are :
i) The perturbations are very small $\frac{\mathrm{u}}{\mathrm{U}_{\infty}} \ll 1, \frac{\mathrm{v}}{\mathrm{U}_{\infty}} \ll 1, \frac{\mathrm{w}}{\mathrm{U}_{\infty}} \ll 1$.
ii) Ranges of Mach number are $, 0<\mathrm{M}_{\infty}<0.8, \mathrm{M}_{\infty}>1.2$
iii) Flow is not hypersonic $M_{\infty}<5$

These assumptions fail at leading edge where assumption (i) is invalid, for transonic flow for which $.8<\mathrm{M}_{\infty}<1.2$ (assumption (ii) is invalid, and for hypersonic flow for which $\mathrm{M}_{\infty}>5$.
b) The lower critical Mach number ($\mathbf{M}_{\infty \text { ccr } 1}$) is the upstream (non-disturbed) flow Mach number at which the maximum local velocity on the airfoil reaches the speed of sound at one point only. This point is called the minimum pressure point or the point of maximum suction.
Evaluation the lower critical Mach number for airfoil with $\mathrm{Cp}_{\mathrm{imin}}=-0.7$.
The characteristic Mach number at point of maximum suction when the airfoil is traveling at $\mathrm{M}_{\infty \text { cor } 1}$ is equal 1.0 i.e $\lambda_{\mathrm{c}}=1.0$, from Cristianowich diagram $\lambda \mathrm{i}=0.7577$

From the equation $\lambda i=\lambda \infty i \quad \sqrt{1-\mathrm{Cp}_{i}}, \lambda \infty \mathrm{i}=\frac{0.7577}{\sqrt{1-(-0.7)}}=0.581$
From Cristianowich diagram the characteristic Mach number for the upstream (non-disturbed) flow is $\lambda \infty c=0.638$ for which the $\mathrm{M}_{\infty c \mathrm{c} 1}=0.8118$.
5-a) It is known that $\sin ^{-1} 1 / \mathrm{M}_{\infty}<\beta<\pi / 2$. Consequently $19.47^{\circ}<\beta<90^{\circ}$.
b) The situation is shown below in Fig. 6

Figure 6
From the $\theta-\beta-M$ diagram, $\beta_{1}=31.2^{\circ}$,

$$
M_{n_{1}}=M_{1} \sin \beta_{1}=3 \sin 31.2=1.554
$$

From Table A.2, for $M_{n_{1}}=1.56$ (nearest entry),

$$
\begin{aligned}
& \frac{p_{2}}{p_{1}}=2.673, \quad \frac{T_{2}}{T_{1}}=1.361, \quad M_{n_{2}}=0.6809 \\
& M_{2}=\frac{M_{n_{2}}}{\sin \left(\beta_{1}-\theta_{1}\right)}=\frac{0.6809}{\sin (31.2-14)}=2.30
\end{aligned}
$$

The flow in region 2, at $M_{2}=2.3$, is deflected downward through the combined angle $\theta_{1}+\theta_{2}=14^{\circ}+10^{\circ}=24^{\circ}$. From the $\theta-\beta-M$ diagram for $M=2.3$ and $\theta=24^{\circ}, \beta_{2}=52.5^{\circ}$,

$$
M_{n_{2}}=M_{2} \sin \beta_{2}=2.3 \sin 52.5=1.82
$$

From Table A.2, for $M=1.82$,

$$
\begin{aligned}
& \quad \frac{p_{3}}{p_{2}}=3.698 . \quad \frac{T_{3}}{T_{2}}=1.547, \quad M_{n_{3}}=0.6121 \\
& M_{3}= \frac{M_{n_{3}}}{\sin \left(\beta_{2}-\theta_{1}-\theta_{2}\right)}=\frac{0.6121}{\sin (52.5-24)}=1.28 \\
& p_{3}= \frac{p_{3}}{p_{2}} \frac{p_{2}}{p_{1}} p_{1}=(3.698)(2.673)(1)=9.88 \mathrm{~atm} \\
& T_{3}= \frac{T_{3}}{T_{2}} \frac{T_{2}}{T_{1}} T_{1}=(1.547)(1.361)(300)=631.6 \mathrm{~K}
\end{aligned}
$$

The process on the pressure deflection diagram is shown below in Figure7 where the pressure change from p_{1} to p_{2} an finally to p_{3} at point 3 .

Figure 7 (reflection on pressure deflection diagram)
From $\theta-\beta-M$ curves, for $M_{3}=\mathbf{1 . 2 8} \theta_{\text {max }}=\mathbf{6 . 5}$ degrees.

