Benha University
Benha Faculty of Engineering
Electrical Engineering Technology (E1105)
1st term 2016-2017

Civil Department
$1^{\text {st }}$ Year Civil
Time: 3 Hrs
Dr. Abdelhady Mahmoud

Question (1):

Find the equivalent resistance R_{ab} for the circuits in Fig. 1.

Ans:

Fig. 1
The top of the pyramid can be replaced by a resistor equal to $R_{1}=\frac{(18)(9)}{27}=6 \mathrm{k} \Omega$
The lower left and right deltas can be replaced by wyes. Each resistance in the wye equals $3 \mathrm{k} \Omega$. Thus our circuit can be reduced to

Now the $12 \mathrm{k} \Omega$ in parallel with $6 \mathrm{k} \Omega$ reduces to $4 \mathrm{k} \Omega$.
$\therefore \quad R_{\mathrm{ab}}=3 \mathrm{k}+4 \mathrm{k}+3 \mathrm{k}=10 \mathrm{k} \Omega$

Question (2):

Use the node-voltage method to find V_{o} in the circuit in Fig.2.

Node equations:

$$
\begin{aligned}
& \frac{v_{1}}{20}+\frac{v_{1}-20}{2}+\frac{v_{3}-v_{2}}{4}+\frac{v_{3}}{80}+3.125 v_{\Delta}=0 \\
& \frac{v_{2}}{40}+\frac{v_{2}-v_{3}}{4}+\frac{v_{2}-20}{1}=0
\end{aligned}
$$

Constraint equations:
$v_{\Delta}=20-v_{2}$
$v_{1}-35 i_{\phi}=v_{3}$
$i_{\phi}=v_{2} / 40$

Solving, $v_{1}=-20.25 \mathrm{~V} ; \quad v_{2}=10 \mathrm{~V} ; \quad v_{3}=-29 \mathrm{~V}$

Let i_{g} be the current delivered by the 20 V source, then

$$
\begin{aligned}
& i_{g}=\frac{20-(20.25)}{2}+\frac{20-10}{1}=30.125 \mathrm{~A} \\
& p_{g}(\text { delivered })=20(30.125)=602.5 \mathrm{~W}
\end{aligned}
$$

Fig. 3

$$
\begin{aligned}
& 230-115=7 i_{1}-1 i_{2}-2 i_{3} \\
& 0=-1 i_{1}+10 i_{2}-3 i_{3} \\
& 115-460=-2 i_{1}-3 i_{2}+10 i_{3}
\end{aligned}
$$

Solving, $i_{1}=4.4 \mathrm{~A} ; \quad i_{2}=-10.6 \mathrm{~A} ; \quad i_{3}=-36.8 \mathrm{~A}$
$i_{\mathrm{x}}=i_{1}=4.4 \mathrm{~A}, i_{\mathrm{y}}=i_{3}-i_{1}=-41.2 \mathrm{~A}$ and $i_{\mathrm{z}}=-i_{3}=36.8 \mathrm{~A}$
$p_{230}=-230 i_{1}=-1012 \mathrm{~W}(\mathrm{del})$

$$
p_{115}=115\left(i_{1}-i_{3}\right)=4738 \mathrm{~W}(\mathrm{abs})
$$

$$
p_{460}=460 i_{3}=-16,928 \mathrm{~W}(\mathrm{del})
$$

$$
\therefore \quad \sum p_{\mathrm{dev}}=17,940 \mathrm{~W}
$$

[b] $p_{6 \Omega}=(10.6)^{2}(6)=674.16 \mathrm{~W}$

$$
\begin{aligned}
& p_{1 \Omega}=(15)^{2}(1)=225 \mathrm{~W} \\
& p_{3 \Omega}=(26.2)^{2}(3)=2059.32 \mathrm{~W} \\
& p_{2 \Omega}=(41.2)^{2}(2)=3394.88 \mathrm{~W} \\
& p_{4 \Omega}=(4.4)^{2}(4)=77.44 \mathrm{~W} \\
& p_{5 \Omega}=(36.8)^{2}(5)=6771.2 \mathrm{~W}
\end{aligned}
$$

$$
\therefore \quad \sum p_{\mathrm{abs}}=4738+674.16+225+2059.32+3394.88
$$

$$
+77.44+6771.2=17,940 \mathrm{~W}
$$

Question (4):

Q 4
(a)

SourG Transfamation H

11

$$
i_{0}=\frac{8 m A}{2}=4 m A
$$

4 (b)

$$
V=\nu_{1 / 0 V}+v_{4 A}
$$

for 110 V on l
active $\Rightarrow 4 A$ open Girbuit

for 4 A only 110 V short Circuit

$$
\begin{aligned}
& \frac{v}{5}+\frac{v-v_{1}}{2}+\frac{v}{10}=0 \\
& \frac{v_{1}-v}{2}+\frac{v_{1}}{12}+4=0 \\
& N_{2 N}^{2 N\left\{10^{2}\right.} 12 \\
& 6 v_{1}-6 v+v_{1}=48 \quad 2 v+5 v-5 v_{1}+v=0 \\
& v_{1}-6 v=-48 \\
& \text { sub. (1) in (2) } \begin{array}{ll}
\frac{56}{5} v-6 v=-48 & \Rightarrow v_{1}=\frac{8}{5} v \\
& \Rightarrow v=-9-23
\end{array} \\
& \begin{array}{l}
8 v=5 v_{1} \\
\Rightarrow v_{1}=\frac{8}{5} v \rightarrow \text { (1) }
\end{array} \\
& \underbrace{5}_{5 v i+2} \\
& V=V_{4 A}+V_{\text {OOV }}=50 \mathrm{~V}
\end{aligned}
$$

Question (5):

open Circuit Voltage

$$
v_{a b}=v_{2}=v_{o c}
$$

$$
V_{a b}=-80 i_{b} * 50 k=-4 \times 10^{+6} i_{b} \rightarrow \text { (t) }
$$

$$
\begin{aligned}
& v_{s}=500 \times 10^{-6} \times 100=5 \times 10^{-2} \mathrm{~V} \text { (source transformation) } \\
& \text { so } 4 \times 10^{-5} v . v
\end{aligned}
$$

$$
\text { so } 4 \times 10^{-5} v_{2}=V_{s}-1410 i_{1}
$$

$$
10^{-5}\left(4-\frac{1410}{40}\right) v_{a b}=v_{s}
$$

$$
\begin{aligned}
& v_{a b}=-\frac{5 \times 10^{-2}(8 \times 8.9)}{10^{-5}(3125)}=-160 \mathrm{~V}=V_{\mathrm{th}} \\
& s c=-8 i
\end{aligned}
$$

$$
\begin{aligned}
& =80 \frac{5 \times 10^{-2}}{1410}+\frac{5 \times 10^{2}}{\overrightarrow{i b}}=2.83 \times 10^{-3}
\end{aligned}
$$

$$
R_{t h}=\frac{v_{t h}}{i s c}=56.4 k \Omega
$$

$$
\begin{aligned}
& V_{2}=V_{T} \\
& i_{T}=\frac{V_{T}}{50 \times 10^{3}}+80 i_{b}=\frac{V_{T}}{50 \times 10^{3}}+8 \times\left(-\frac{4 \times 10^{-5}}{1410} V_{T}\right) \\
& i_{T}=V_{T}\left[\frac{141-8 \times 4 \times 50 \times 10^{-2}}{50 \times 10^{3} \times 1418}\right. \\
& \frac{V_{T}}{i_{T}}=R_{t h}=56.4 \mathrm{~K} \quad
\end{aligned}
$$

(c) for max. Power Transfer

$$
\begin{aligned}
& R_{a b}=R_{t h} \\
& \text { so } P_{\max }=\frac{v_{t h}^{2}}{4 R_{t h}}=0.11341 \mathrm{watt}
\end{aligned}
$$

Question (6):

$$
V_{0}=8(3)-10(2)-9(1)=-5 \mathrm{~V}
$$

(b) $8 v_{c}-20-9=v_{0}$

$$
\begin{gathered}
8 v_{c}=29+v_{0} \\
v_{c}=\frac{2 q+v_{0}}{8} \\
-v_{c-c} \leqslant v_{0} \leqslant v_{c c} \\
\frac{29}{8}-\frac{v_{c c}}{8} \leqslant v_{c} \leqslant \frac{29}{8}+v_{c c}^{8} \\
\frac{29}{8}-\frac{v_{c}}{8} \leqslant v_{c} \leqslant \frac{29}{8}+\frac{20}{8} \\
1-125 \leqslant v_{c} \leqslant \frac{b-125}{}
\end{gathered}
$$

(c) Mathematial eqn:-

$$
Z=-9 w-10 X+8 Y
$$

