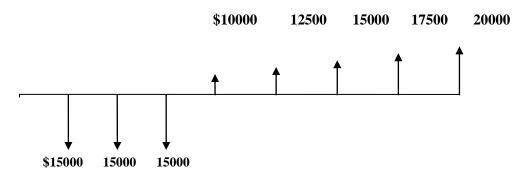


Benha University College of Engineering at Benha Department of Mechanical Eng.

Subject: Engineering Economy Date: 9/1/2016

Model Answer of the Final Exam


Elaborated by: Dr. Mohamed Elsharnoby

نموذج الاجابة المادة :اقتصاد هندسى م 561 الغرقة الخامسة التاريخ السبت 9 يناير2016

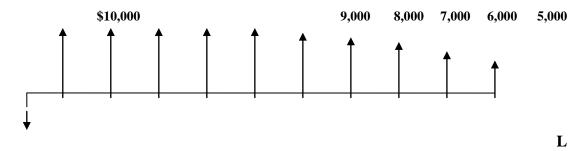
استاذ المادة: د. محمد عبد اللطيف الشرنوبي

PROPLEM 1

1. An investor can make three year-end payments of \$15,000, which generates receipts of \$10,000 at the end of year 4, that will increase annually by \$2500 for the following 4 years. If the investor can earn a rate of return of 10 percent on alternative 8-year investments, is this alternative attractive?

NPW = -15000(P/A,10%,3) + [10000(P/A,10%,5) + 2500(P/G,10%,5)](P/F,10%,3),

=-15000*2.4869+(10000*3.7908+2500*6.8618)*0.7513-1000*0.4665


NPW= -37303.5 +(37908+17154.5)*0.7513-466.5 = \$ 4130

Then the rate of return is greater than 10%

this alternative is attractive

2-If you get a loan (L)from a bank which should be repaid as a series of payments (shown in figure)- \$10,000 at the end of each of the first five years, \$9,000, at the end of the 6^{th} year, \$8,000, at the end of the 7^{th} year, \$7,000, at the end of the 8^{th} year, \$6,000, at the end of the 9^{th} and \$5,000, at the end of the 10^{th} . What is the amount of the loan you obtained if the bank gets 10% interest rate:

i) compounded annually, ii) compounded monthly, iii) compounded continuously?

i) compounded annually,

L = 10000(P/A, 10%, 5) + [9000(P/A, 10%, 5) - 1000(P/G, 10%, 5)](P/F, 10%, 5)L = 10000*3.7908 + (9000*3.7908 - 1000*6.8618)*0.6209 L= 37908 + (34117.2-6861.8)*0.6209 L= \$ 54830.88

ii) Compound monthly

Use the formula to find (P/A, i_{eff} %,5), (P/G, i_{eff} %,5)., (P/F, i_{eff} %,5). I_{eff} =(1+10/12)¹²-1=0.104713

Present Worth:P =
$$A\{[(1+i)^n - 1]/[i(1+i)^n]\}$$
 = $A\{P/A,i,n\}$
(P/A,i,n) = 3.74558

Present Worth P =
$$G \{ [(1+i)^n - i n - 1]/[i^2(1+i)^n] \} = G (P/G,i,n)$$

(P/G,i,n) = 6.74834

Present worth: $P = F (1+i)^{-n} = F (P/F,i,n)$

(P/F,i,n) = 0.607788

L = 10000*3.74558 + (9000*3.74558 - 1000*6.748343)*0.60778859

L = 37455.8 + (33710.2 - 6748.3) *0.6077886

L= \$53842.9

iii) compounded continuously

 $i_{\rm eff} = 0.1051709$

Present Worth:P =
$$A\{[(1+i)^n - 1]/[i(1+i)^n]\}$$
 = $A\{P/A,i,n\}$ (P/A,i,n) = 3.741238

Present Worth P =
$$G \{ [(1+i)^n - i \ n - 1]/[i^2(1+i)^n] \} = G (P/G,i,n)$$

(P/G,i,n) = 6.737457

Present worth: $P = F(1+i)^{-n} = F(P/F,i,n)$

(P/F,i,n) = 0.60653

L = 10000*3.741238 + (9000*3.741238 - 1000*6.737457)*0.60653

L = 37412.8 + (33671.1-6737.5)*0.60653

L= \$53748.8

3) The total Marginal cost

Year	Market value	Loss in Market	Foregone interest	Operati ng	Maintenance Cost,\$	Salvage Value, \$	Total Recovery
	varue	value	merest	Cost,\$	C 03 ι ,φ	ν αιας, φ	Cost
0	\$60000						
1	35.000	-\$25000	-\$6000	15,000	-3000	35.000	-\$49000
2	30.000	-\$5000	-\$3500	-17,000	-3000	30.000	-\$28500
3	25.0000	-\$5000	-\$3000	-19,000	-3000	25.0000	\$30000
4	20,000	-\$5000	-\$2500	-21,000	-3000	20,000	-\$31500
5	15,000	-\$5000	-\$2000	-23,000	-3000	15,000	\$33000

The life cost of one year is 49000

The EUAC for two years is = (49000+28500/(1+i))*(A/P,10%,2)=(49000+28500/(1+i))*5762=(49000+25909)*0.5762=-\$43162.6

The EUAC for three years is = $(49000+28500/(1+i)+30000*(1+i)^{-2})*A/P,10\%,3)=(49000+25909+24793.3)*0.4021=-40090.3

The EUAC for four years is = $(49000+28500/(1+i)+30000*(1+i)^{-2})*+31500*(1+i)^{-3})(A/P,10\%,4)=(49000+25909+24793.3+23666.3)*0.3155=-38922

The EUAC for five years is = $(49000 + 28500/(1+i) + 30000*(1+i)^{-2})* + 31500*(1+i)^{-3} + 33000*(1+i)^{-4}$

⁴)(A/P,10%,5)= (49000 +25909+24793.3 +23666.3+22539.4)*0.2638=-\$38409

Economic life is 5 years

Year	Market	EUAC of	Foregone	Operati	Maintenance	Salvage	Total
	value	Capital	interest	ng	Cost,\$	Value, \$	Recovery
		recovery		Cost,\$			Cost
0	\$60000						
1	35.000	-\$25000	-\$6000	15,000	-3000	35.000	-\$49000
2	30.000	-\$5000	-\$3500	-17,000	-3000	30.000	-\$28500
3	25.0000	-\$5000	-\$3000	-19,000	-3000	25.0000	\$30000
4	20,000	-\$5000	-\$2500	-21,000	-3000	20,000	-\$31500
5	15,000	-\$5000	-\$2000	-23,000	-3000	15,000	\$33000

For one year

 $EUAC\ of\ Capital\ recovery\ for\ one\ year = -\$60000*(A/P,10\%,1)\ +\$\ 35000*(A/F,10\%,1)$

=-\$ 66000+\$ 35000 =-\$31000

EUAC of Capital recovery for two years =-\$ 60000*(A/P,10%,2) + \$ 30000*(A/F,10%,2)

=-\$ 60000*0.5762 +\$ 30000* 0.476 =-\$ 20292

EUAC of Capital recovery for three years = -\$60000*(A/P,10%,3) +\$ 25000*(A/F,10%,3)

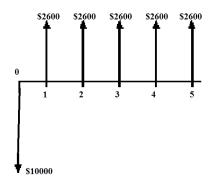
=-\$ 60000*0.4021 +\$25000* 0.3021=-\$16573.5

EUAC of Capital recovery for four years =-\$ 60000*(A/P,10%,4) +\$ 20000*(A/F,10%,4)

=-\$ 60000*0.3155 +**\$**20000* 0.2155**=-\$**14620

EUAC of Capital recovery for five years =-\$ 60000*(A/P,10%,5) + \$15000*(A/F,10%,5) =-\$60000*0..2638 + \$15000* 0.1638 =-\$13371

Year	Market value	EUAC of Capital recovery	Operati ng Cost,\$	Maintenance Cost,\$	Total EUAC
0	\$60000	•			
1	35.000	-\$31000	15,000	-3000	-\$49000
2	30.000	-\$20292	-17,000	-3000	-\$40292
3	25.0000	-\$16573.5	-19,000	-3000	\$38573
4	20,000	-\$14620	-21,000	-3000	-\$38620
5	15,000	-\$13371	-23,000	-3000	\$39391


Year	Market value	EUAC of Capital recovery	EUAC OP cost,\$	Maintenance Cost,\$	Total EUAC
0	\$60000				
1	35.000	-\$31000	15,000	-3000	-\$49000
2	30.000	-\$20292	-15,932.4	-3000	-\$39224.4
3	25.0000	-\$16573.5	-16873.2	-3000	\$36446.7
4	20,000	-\$14620	-17636	-3000	-\$35256
5	15,000	-\$13371	-18620	-3000	\$34991

Economic life is 5 years

4)

For Alternative B

Year	CF before	SL	Taxable	Tax (40%)	CF after taxes
	taxes	Depr.	Inc.		
	(a)	(b)	(c) = (a) -	(d) = -	$(\mathbf{a}) + (\mathbf{d})$
			(b)	40%(c)	
0	-\$10,000				-\$10,000
1	3,000	2000	1,000	-400	2600
2	3,000	2000	1,000	-400	2600
3	3,000	2000	1,000	-400	2600
4	3,000	2000	1000	-400	2600
5	3,000	2000	1000	-400	2600

For the ACFS above (A/P,i,5) = 2600/10000 = 0.26

For i = 9% (A/P,9%,5) = 0.2571

For i = 10% (A/P,10%,5) = 0.2638

The ROR after taxes $i \approx 9.4\%$

When the inflation rate is 6%

The real rate of return $i' = \frac{i - f}{1 + f} \approx 3.21\%$

For Alternative A

Year	CF before	SL	Taxable	Tax (40%)	CF after taxes
	taxes	Depr.	Inc.		
	(a)	(b)	$(\mathbf{c}) = (\mathbf{a}) -$	(d) = -	$(\mathbf{a}) + (\mathbf{d})$
			(b)	40%(c)	
0	-\$20,000				-\$20,000
1	5,000	4000	1,000	-400	4600
2	5,400	4000	1,400	-560	4840
3	6,000	4000	2,000	-800	5200
4	5,500	4000	1500	-600	4900
5	-5,000	4000	-9000	0	-5000

From tables of CFS of A and B we found that B is more attractive

This is corresponding IRR =

5)

Using the geometric gradient with real factor = (1+i)/(1+f)

= A (P/A,g,i,n) = A {[1 - (1+g)^n(1+i)^{-n}]/(i-g)} P If
$$i \neq g$$
,
P = 1800*9.9132- = -17843.8 = 1800*1.12=\$ 19450

i) Constant dollar

$$i' = (i-f)/(1+f) = 2.75229\%$$

$$= A (P/A,i,n)$$
 = $A\{[(1+i)^n - 1]/[i(1+i)^n]\}$ Present Worth:P

P = 1800 * (0.42327) / (0.0275229*1.42327) = 1800*10.8054 = 19450

GOOD LUCK