Benha University

Benha Faculty of Engineering
1st Term 2014-2015 تخلفات

Electrical Engineering and Circuit Analysis(a) (E1101)
Electrical Department
$1^{\text {st }}$ Year Electrical
Dr.Wael Abdel-Rahman Mohamed
Time: 3 Hrs

Exam with model Answer

Question (1): [10 Marks]

Find the resistance seen by the ideal voltage source in the circuit in Fig.1.

Use delta to star transformation then parallel and series combinations to find the total resistance.
Final answer is $\boldsymbol{R}_{\boldsymbol{e q}}=2.42 \Omega$.

Fig. 1

Question (2): [10 Marks]

The voltage across the 16Ω resistor in the circuit in Fig. 2 is 80 V , positive at the upper terminal. Find the voltage across the 15Ω resistor.

Fig. $2 \rightarrow$

The two terminal voltages of 15Ω resistor are known, they are 125 V and 80 V . the voltage drop on 15Ω resistor is $125-80=45 \mathrm{~V}$

Question (3): [10 Marks]

Use the node-voltage method to find v_{1}, v_{2} and v_{3} in the circuit in Fig.3.

Fig. 3

$$
\begin{array}{lll}
\frac{v_{1}}{40}+\frac{v_{1}-40}{4}+\frac{v_{1}-v_{2}}{2}=0 & \text { so } & 31 v_{1}-20 v_{2}+0 v_{3}=400 \\
\frac{v_{2}-v_{1}}{2}+\frac{v_{2}-v_{3}}{4}-28=0 & \text { so } & -2 v_{1}+3 v_{2}-v_{3}=112 \\
\frac{v_{3}}{2}+\frac{v_{3}-v_{2}}{4}+28=0 & \text { so } & 0 v_{1}-v_{2}+3 v_{3}=-112
\end{array}
$$

Solving, $v_{1}=60 \mathrm{~V} ; \quad v_{2}=73 \mathrm{~V} ; \quad v_{3}=-13 \mathrm{~V}$,

Question (4): [10 Marks]

Use the mesh-current method to find the power developed in the dependent voltage source.

Mesh equations:
$53 i_{\Delta}+8 i_{1}-3 i_{2}-5 i_{3}=0$
$0 i_{\Delta}-3 i_{1}+30 i_{2}-20 i_{3}=30$
$0 i_{\Delta}-5 i_{1}-20 i_{2}+27 i_{3}=30$

Constraint equations:
$i_{\Delta}=i_{2}-i_{3}$
Solving, $i_{1}=110 \mathrm{~A} ; \quad i_{2}=52 \mathrm{~A} ; \quad i_{3}=60 \mathrm{~A} ; \quad i_{\Delta}=-8 \mathrm{~A}$
$p_{\text {depsource }}=53 i_{\Delta} i_{1}=(53)(-8)(110)=-46,640 \mathrm{~W}$
Therefore, the dependent source is developing 46,640 W.

Question (5): [10 Marks]

Use the principle of superposition to find the current i_{o} in the circuit shown in Fig.5.

Fig. 5

6 A source:

$30 \Omega\|5 \Omega\| 60 \Omega=4 \Omega$
$\therefore \quad i_{o 1}=\frac{20}{20+5}(6)=4.8 \mathrm{~A}$

10 A source:

$i_{o 2}=\frac{4}{25}(10)=1.6 \mathrm{~A}$
75 V source:

$i_{o 3}=-\frac{4}{25}(15)=-2.4 \mathrm{~A}$
$i_{o}=i_{o 1}+i_{o 2}+i_{o 3}=4.8+1.6-2.4=4 \mathrm{~A}$

Question (6): [10 Marks]

In the circuit shown in Fig.6, find v_{o} when v_{g} equals $4 v$.

Fig. 6
$v_{p}=v_{n}=\frac{68}{80} v_{g}=0.85 v_{g}$
$\therefore \frac{0.85 v_{g}}{30,000}+\frac{0.85 v_{g}-v_{o}}{63,000}=0 ;$
$\therefore \quad v_{o}=2.635 v_{g}=2.635(4), \quad v_{o}=10.54 \mathrm{~V}$

