Benha University Benha Faculty of Engineering Electrical Engineering and Circuit Analysis(a) (E1101) Dr.Wael Abdel-Rahman Mohamed

Electrical Department 1st Year Electrical Time: 3 Hrs

Exam with model Answer

The two terminal voltages of 15 Ω resistor are known, they are 125 V and 80 V. the voltage drop on 15 Ω resistor is 125 - 80 = 45 V

Question (3): [10 Marks]

Use the node-voltage method to find v_1 , v_2 and v_3 in the circuit in Fig.3.

Page **2** of **5**

Question (4): [10 Marks]

Use the mesh-current method to find the power developed in the dependent voltage source.

Mesh equations:

 $53i_{\Delta} + 8i_1 - 3i_2 - 5i_3 = 0$ $0i_{\Delta} - 3i_1 + 30i_2 - 20i_3 = 30$ $0i_{\Delta} - 5i_1 - 20i_2 + 27i_3 = 30$

Constraint equations:

 $i_{\Delta} = i_2 - i_3$

Solving, $i_1 = 110$ A; $i_2 = 52$ A; $i_3 = 60$ A; $i_{\Delta} = -8$ A $p_{\text{depsource}} = 53i_{\Delta}i_1 = (53)(-8)(110) = -46,640$ W

Therefore, the dependent source is developing 46,640 W.

Question (5): [10 Marks]

Use the principle of superposition to find the current i_o in the circuit shown in Fig.5.

Fig.5

6 A source:

 $30\,\Omega\|5\,\Omega\|60\,\Omega=4\,\Omega$

$$\therefore i_{o1} = \frac{20}{20+5}(6) = 4.8 \text{ A}$$

$$i_{o2} = \frac{4}{25}(10) = 1.6 \text{ A}$$

75 V source:

$$i_{o3} = -\frac{4}{25}(15) = -2.4 \text{ A}$$

$$i_o = i_{o1} + i_{o2} + i_{o3} = 4.8 + 1.6 - 2.4 = 4$$
 A

Question (6): [10 Marks] In the circuit shown in Fig.6, find v_o when v_g equals 4v.

$$v_p = v_n = \frac{68}{80} v_g = 0.85 v_g$$

$$\therefore \quad \frac{0.85 v_g}{30,000} + \frac{0.85 v_g - v_o}{63,000} = 0;$$

$$\therefore v_o = 2.635v_g = 2.635(4), v_o = 10.54$$
 V

With best wishes