Benha University
Department:Electrical engineering

Time:2Hours.
$3^{\text {rd }}$ Year Course Exam
Subject:Microprocessor Based Systems (b)

Question 1(8marks)

Write assembly language program for 8051 to count number of one's and zeros's in number N stored in memory location 30 H

Program :

MOV R2, \#0	Initialize one's counter
MOV R3, 0	; Initialize zero's counter $=0$
MOV R1, $\ddagger 08$	Initialize iteration count
MOV RO, \$56	Load number
MOV A, R0	Get the number in accumulator
RRC A	Rotate A and CY \leftarrow LSB
JC SKIP	; If carry is zero go to skip
INC R3	; Otherwise increment zero's counter
AJMP LAST	; Go to last
INC R2	; Increment one's counter
DJNZ R1, BACK	; Decrement iteration count and if not ; zero repeat

Questin2(8marks)

Assume XTAL=12 MHz, write assembly language program for 8051 such that LED connected to port P1.0 flash at 0.5 sec rate when line P 2.0 goes high. Use timer 0 for generating delay.

Solution : Program :
MOV TMOD, $\ddagger 01$; Timer 0 , Mode 1 (16-bit mode)
MOV P2, $\ddagger 0 F F H$; configure P 2 as input
CHECK: JB P2.0, CHECK ; Repeat until P2.0 = logic 1
HERE: CPL P1.0 ; Toggle P1.0
ACALL DELAY ; Wait for 0.5 sec
SJMP HERE ; Repeat

Assume $\mathrm{XTAL}=12 \mathrm{MHz}$
\therefore Timer clock frequency $=12 \mathrm{MHz}+12=1 \mathrm{MHz}$

$$
\therefore \quad T=1 \mu \mathrm{~s}
$$

Benha University

Time:2Hours.
$3^{\text {rd }}$ Year Course Exam
Subject:Microprocessor Based Systems (b)

With this timer frequency and 16 -bit timer we can get maximum delay of $65536 \times 1 \mu \mathrm{~S}=65.536 \mathrm{~ms}$. Therefore, to get a delay of 0.5 sec . we have use external loop. We program timer 0 to give delay of 50 ms and such a delay is executed for 10 times to get a delay of 0.5 sec .

To get delay of 50 ms , the timer has to down step 50000 times. Therefore, the initial value to loaded in TH and TL will be

Value $=(65536-50000)_{10}$			
\therefore	$=3 \mathrm{CBOH}$		
	$\mathrm{TH} \leftarrow 3 \mathrm{CH}$	and	$\mathrm{TL}=\mathrm{BOH}$
DELAY:	MOVE RO, \#OAH	;	Initialize counter to 10
BACK :	MOV TLO, \#BOH	;	TLO - BOH, the low byte
	MOV THO, \#3CH	;	THO $=3 \mathrm{CH}$ the high byte
	SETB TRO	;	Start the timer 0
AGAIN:	JNB TFO, AGAIN	;	Check timer0 flag until
	+	;	it rolls over
	CLR TRO	;	stop timer 0
	CLR TEO	;	Clear timer 0 flag
	DJNZ RO, BACK	;	Decrement counter and if not
		;	zero repeat
	RET		

Write programs that will accomplish the desired tasks listed below, using a few lines of code.

1. Find the 2 's complement of a number in R0
2. Unpacked the packed BCD stored in the accumulator and save the result in R0 and R1.
3. Subtract the contents of Bank0 from the contents of R0 of Bank2
4. Add the following data and store the result in RAM location 30 H

ORG 200H

$$
\text { MYDATA: DB 06, 09, 02, 05, } 07
$$

Benha University
Department:Electrical engineering
Benha Faculty of Engineering
April, 2017
Exam (Midterm)
Cxaminar:Dr. Tamer Omar

Time:2Hours.
$3^{\text {rd }}$ Year Course Exam
Subject:Microprocessor Based Systems (b)

Find the 2's complement of a number in R0.

```
MOV A,RO ; (A) }\leftarrow\mathrm{ (RO)
CPL A ; 1s complement A
ADD A,|01 ; Add 1 to it to get 2s complement
```

Unpacked the packed $B C D$ number stored in the accumulator and save
the result in R0 and R1 such that $(\mathrm{R} 0) \leftarrow \mathrm{LSB}$ and $(\mathrm{R} 1) \leftarrow$ MSB.
MOV B, A ; Save the packed BCD number
ANL A,\#OFH ; Mask upper nibble of BCD number
MOV RO,A ; Save the lower digit
MOV A, B ; Get the packed BCD number
ANL A, $\# O F O H$; Mask lower nibble of $B C D$ number
SWAP A ; Exchange the lower and upper
MOV R1,A ; Save the upper digit.

Subtract the contents of R1 of Bank0 from the contents of R0 of Bank2.

MOV PSW, $\# 10$; Select Bank2
MOV A, R0	(A) \leftarrow (R0) from Bank2
MOV PSW, $\# 00$; Select Bank 0
CLR C	Clear carry
SUBB A, R1	; A \leftarrow A-(R1) from Bank0

Question4 (8 marks)
Assume XTAL=11.0592 MHz Write software delay subroutine to generate
a. 2 KHz square wave on P1.0.

```
ORG 000H
```

MOV P1,\#00000000B

MOV A,\#00000000B

MAIN: MOV R6,\#220D

MOV R7,\#183D

LOOP1:DJNZ R6,LOOP1

LOOP2:DJNZ R7,LOOP2

CPL A

MOV P1,A

SJMP MAIN

Benha University

END

b. Triangular wave of period 1 ms

ORG 0
CLR A
UP:INC A
MOV P2,A
CJNE A, \#OFFH, UP
LCALL DELAY
DOWN: DEC A
MOV P2,A
CJNE A,\#00,DOWN
LCALL DELAY
SJMP UP
END

Question5(8 marks)

Benha University
Department:Electrical engineering
Benha Faculty of Engineering
April, 2017
Exam (Midterm)
Examinar:Dr. Tamer Omar

Assume that the lower three bits of PI are connected to three switches.
Write a program to send the ASCII characters to P2 based on the status of the switches.

000	$' 0$
001	$' 1$
010	$' 2$
011	$' 3$
100	$' 4$
101	$' 5$
110	$' 6$
111	$' 7$

Solution:

MOV	DPTR, \#MYTA	BLE
MOV	A, P1	; get SW status
ANL	A, \#07H	;mask all but lower 3 bits
MOVC	A, ®A+DPTR	; get the data from look-up table
MOV	P2, A	; display value
SJMP	\$; stay here
ORG	400 H	
DB	'0', '1', 2	'2', '3', ${ }^{\prime}$ ', '5', '6', ${ }^{\prime \prime}$
END		

You can easily modify this program for the hex values of $0-\mathrm{F}$, which are supplied by 4×4 keyboards. See Chapter 12 for a keyboard example.

